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ABSTRACT

This dissertation studies non-convex optimizations under the strong duality condition. In

general, non-convex problems are non-deterministic polynomial-time (NP) hard and hence are

difficult to solve. However, when strong duality holds, one can recover primal optimal solutions

by efficiently solving their convex, associated Lagrange dual relaxations instead.

For certain non-convex optimizations, such as optimal power flow (OPF), phase recovery,

and etc., it has been shown that strong duality holds under most circumstances. Consequently,

their associated Lagrange dual problems, usually expressed in semi-definite programming (SDP)

forms, have attracted the attention of researchers. However, we notice that these SDP Lagrange

duals are in general not amenable to be solved in a distributed manner. To address this issue, we

propose two distributed approaches in this dissertation to study those non-convex optimizations

under the condition of strong duality.

Our first approach is called the continuous-time optimization dynamics approach. Rather

than considering the Lagrange dual alone, this approach studies the primal and dual problems

together at the same time. By viewing primal and dual variables of an optimization problem

as opponents playing a min-max game, the evolution of the optimization dynamical system can

be interpreted as a competition between two players. This competition will not stop until those

players achieve a balance, which turns out to be an equilibrium to the optimization dynamics

and is mathematically characterized as a Karush-Kuhn-Tucker (KKT) point.

A convergence analysis is then developed in this dissertation, showing that under certain

conditions a KKT equilibrium of the associated optimization dynamics is locally asymptotically

stable. However, after the optimization dynamics converges to a KKT equilibrium, we have to

further check whether or not the obtained KKT point is globally optimal, since KKT conditions

are only necessary for the local optimality of non-convex problems. It motivates us to investigate

under what conditions a KKT point can be guaranteed as a global optimum.
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Then in the dissertation we derive a global optimality condition for general quadratically

constrained quadratic programmings (QCQPs). If an isolated KKT point of a general QCQP

satisfies our condition, then it is locally asymptotically stable with respect to the optimization

dynamics. We next apply the optimization dynamics approach to a special class of non-convex

QCQPs, namely, the OPF problems. We discover that their associated optimization dynamical

systems possess an intrinsic distributed structure. Simulations are also provided to show the

effectiveness of our continuous-time optimization dynamics approach.

Alternatively, we also propose a consensus-based, decomposed SDP relaxation approach to

solve OPF problems. Here we continue to exploit the distributed structure of power networks,

which finally enables us to decompose the standard SDP relaxation into a bunch of smaller

size SDPs. Then each bus in the power network should locally solve its own decomposed SDP

relaxation and meanwhile a global OPF solution can be achieved by running a consensus over

the whole power network. Hence this approach can be implemented in a distributed manner.

We show that the size of our decomposed SDP relaxation scales linearly as the power network

expands, so it can greatly fasten the OPF computation speed.
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CHAPTER 1. OVERVIEW

1.1 Introduction

In this dissertation we study non-convex optimizations under the condition of strong duality.

Generally speaking, non-convex problems are non-deterministic polynomial-time (NP) hard and

hence are difficult to solve. However, when strong duality holds, one can recover primal optimal

solutions by efficiently solving their convex, associated Lagrange dual relaxations instead.

The existing works, e.g., Candès et al. (2011) and Lavaei and Low (2012), have respectively

shown that strong duality condition holds for the non-convex phase recovery and optimal power

flow (OPF) problems under most circumstances. Therefore, optimal solutions to these problems

can be efficiently recovered from their associated Lagrange duals.

The Lagrange duals associated with above problems are usually expressed in semi-definite

programming (SDP) forms. However, we notice that those SDPs are in general not amenable

to be solved in a distributed manner, because the evaluation of the positive semi-definite cone

requires centralized computing. When the problem size is large, such a centralized computation

of an SDP may be cumbersome. To meet this challenge, this dissertation focuses on solving

the non-convex optimizations with strong duality via distributed approaches.

One main topic of this dissertation is to utilize the so-called continuous-time optimization

dynamics approach to solve non-convex optimizations under the strong duality condition. The

optimization dynamics approach, rather than solving the Lagrange dual itself, considers both

primal and dual problems together at the same time. Most importantly, we discover that if the

original non-convex optimization has sparse coefficient matrices (see the OPF problem as an

example), then the associated optimization dynamical system possesses a naturally distributed

structure, i.e., each primal or dual variable uses a local information to make update decisions.
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Besides the optimization dynamics, in this dissertation we also directly investigate the SDP

duals associated with OPF problems and propose a distributed, decomposed SDP relaxation

approach. By exploiting the same distributed structure of the OPF problem, we decompose its

original large-size SDP Lagrange dual into a bunch of smaller SDPs, each of which can be solved

locally and a global solution can be achieved via a consensus coordination. Consequently, this

approach can be implemented in a distributed manner. A great advantage of this decomposed

SDP relaxation is that its problem size scales nicely as the power network expands, and hence

it can greatly fasten the OPF computation speed.

1.1.1 The Continuous-Time Optimization Dynamics

The optimization dynamics, also known as the primal-dual dynamics, was first proposed as

a continuous-time primal-dual optimization algorithm by seminal works Arrow and Hurwicz

(1958) and Uzawa (1958) for solving strictly convex problems.

Under mild constraint qualification assumptions, the global optimality of a convex problem

can be equivalently characterized by Karush-Kuhn-Tucker (KKT) conditions. In other words,

every KKT point is also a saddle-point (a pair of primal and dual optima) for the Lagrangian

associated with the convex problem under study, and vice versa.

In these circumstances the optimization dynamics approach can be motivated for searching

the KKT points, which turn out to be the equilibria of the associated optimization dynamical

system. After the optimization dynamics has converged to some KKT point, we can recover a

global solution for the convex problem under study from the obtained KKT point, due to its

equivalence with the saddle-point for the associated Lagrangian.

By viewing the primal and dual variables as two players in a convex-concave game, the idea

behind the optimization dynamics is quite natural: The primal player attempts to minimize

the associated Lagrangian by moving against the gradient with respect to itself, while the dual

player follows its own gradient direction hoping to maximize the associated Lagrangian. Such

a competition stops when a balance between the two players is reached. This balance, which

is mathematically characterized by KKT conditions, will be globally optimal for both players

if the problem under study is convex.
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In both works Arrow and Hurwicz (1958) and Uzawa (1958), it has been shown that the

optimization dynamics approach can be successfully applied to solve strictly convex problems.

As for those non-strictly convex problems, say, linear programmings (LPs) for instance, we can

give counterexamples showing that the associated optimization dynamics may oscillate and

does not converge to any equilibrium at all. In these cases, one can still find global solutions by

applying the optimization dynamics that is derived instead from the augmented Lagrangian.

Let us present an example illustrating how to define the optimization dynamical system.

Consider an equality constrained, strictly convex problem

minimize
x∈Rn

f(x) (1.1a)

subject to Ax = b (1.1b)

where A ∈ Rm×n with m ≤ n, and b ∈ Rm. We assume that f : Rn → R is a strictly convex

and continuously differentiable function, that matrix A has a full row rank, and that problem

(1.1a) – (1.1b) is strictly feasible and has a finite optimal solution. Let λ ∈ Rm be the Lagrange

multiplier associated with constraint (1.1b), then the Lagrangian can be formulated as

L(x, λ) = f(x) + λT (Ax− b). (1.2)

By the classical Lagrange duality theory, the Lagrange dual relaxation to the primal problem

(1.1a) – (1.1b) is given by

maximize
λ∈Rm

minimize
x∈Rn

L(x, λ). (1.3)

Under current assumptions, we conclude that the Lagrangian (1.2) is strictly convex in x and

concave in λ, and strong duality holds between problems (1.1a) – (1.1b) and (1.3).

Then the optimization dynamical system associated with problem (1.1a) – (1.1b) can be

defined as follows

ẋ := −∇xL(x, λ) = −∇xf(x)−ATλ (1.4a)

λ̇ := ∇λL(x, λ) = Ax− b (1.4b)

where ∇x and ∇λ represent the gradients with respect to x and λ, respectively.
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Figure 1.1 The block diagram of an optimization dynamical system

1.1.2 A Control Perspective for the Optimization Dynamical System

Wang and Elia (2011) has studied the optimization dynamical system (1.4a) – (1.4b) from

a control perspective. Figure 1.1 shows the block diagram of dynamics (1.4a) – (1.4b). Since

the block diagram is interconnected with closed loops, we know that dynamics (1.4a) – (1.4b)

must be subject to the fundamental limitations of feedback.

Moreover, the vector b in constraint (1.1b) can be interpreted as an input command to the

dynamical system. When b changes over time, the dynamical system will correspondingly track

the new command and adapt itself to a new equilibrium point, leading to the possibility of a

real-time adaptive optimization.

1.1.3 Motivations for the Continuous-Time Optimization Dynamics

Since those seminal works from 1958, the continuous-time optimization dynamics approach

has been almost forgotten until several new applications for the rate control in communication

networks Kelly et al. (1998), resource allocation Feijer and Paganini (2010), general distributed

convex optimizations Wang and Elia (2011), as well as optimizations over power networks, e.g.,

Ma and Elia (2013), Dörfler et al. (2014), Zhao et al. (2014), and Mallada et al. (2014).

In this work, we employ the continuous-time optimization dynamics to investigate general

non-convex optimization problems. If strong duality holds for a given non-convex problem, it

may be still possible for us to apply the optimization dynamical system, seeking saddle-points

for the associated Lagrangian. Moreover, we have the following reasons that motivate our study

on the continuous-time optimization dynamics.
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Firstly, when compared with those discrete-time primal-dual optimization algorithms, we

find that the continuous-time optimization dynamics approach can be more easily applied to

non-convex problems.

We notice that in literature there are many discretized algorithms that are developed based

on the primal-dual optimization idea. Some popular ones, for example, include the sub-gradient

optimization method by Nedić and Ozdaglar (2009) and the alternating direction method of

multipliers (ADMM) by Boyd et al. (2011).

However, those algorithms are mainly conceived for solving convex problems, and hence are

difficult to be applied to non-convex optimizations. When a problem under study is non-convex,

one major obstacle that hinders the application of those algorithms lies in how to update the

primal variable. At each step, for example, the sub-gradient method computes the projection

of primal gradient to the primal feasible set as an update direction; while the ADMM yields its

update direction by minimizing the associated Lagrangian with respect to the primal variable.

If the primal feasible set is a non-convex set and the associated Lagrangian is also non-convex

in the primal variable, then neither algorithms can work properly. In contrast, we do not need

to worry about these issues for the continuous-time optimization dynamics approach.

Secondly, the optimization dynamical system may help us find certain hidden saddle-point

for the Lagrangian associated with a non-convex problem.

In general, it is not easy to derive an explicit Lagrange dual for a non-convex optimization.

Sometimes, the Lagrange dual could be developed only after some equivalent transformations

have been done to the original non-convex problem. In our research, however, we discover the

fact that an equivalent transformation between two non-convex problems may not guarantee

the equivalence between their associated Lagrange duals. We find that the Lagrange dual to

the original non-convex problem, although we do not know how it looks like, can be stronger

than the explicit Lagrange dual which is derived from the equivalent transformation.

For example, an SDP Lagrange dual can be developed for the non-convex OPF problem

after the lifting technique has been applied to the original problem. This technique equivalently

changes the variables of an OPF problem from an n-dimensional vector space into an n × n

dimensional symmetric matrix space.
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We can prove that whenever the SDP dual provides strong duality for the equivalent OPF

formulation, the optimization dynamics associated with the original OPF problem must have

a saddle-point as equilibrium. On the other hand, we also have counterexamples showing that

the original optimization dynamical system may still converges to a saddle-point even though

the SDP dual fails to maintain strong duality. Due to the loss of strong duality, of course this

saddle-point cannot be found by the SDP dual. However, such a saddle-point really exists for

the Lagrangian associated with the original OPF problem, implying that the implicit Lagrange

dual to the original OPF must be stronger than the corresponding SDP dual.

Thirdly, when the optimization dynamics is applied to solve certain networked optimization

problems, we discover that the associated optimization dynamical systems possess an intrinsic

distributed computation structure. To be specific, each individual node in the network only

uses the local information from neighboring nodes to compute the gradients for its own primal

variables and Lagrange multipliers. Moreover, if any two nodes are not directly connected with

each other, then there is no communication between them. In this work we present MAXCUT

and OPF problems as examples to illustrate the distributed computation structure. Moreover,

such a distributed structure only belongs to the continuous-time optimization dynamics, for it

will be destroyed somehow by discretized implementations.

Last but not least, we need to point out that for many real-time optimization problems, the

continuous-time optimization dynamics may possess certain physical meanings. Recent works

Mallada et al. (2014) and Zhao et al. (2014) have both shown that, for the optimal load control

and optimal frequency regulation over power networks, the physical swing dynamics, along with

the power flow dynamics, serves as a continuous-time primal-dual optimization algorithm. In

these cases, we are able to merge the associated optimization dynamical systems into the real

physics. As a result, a real-time optimization can be naturally achieved by physical computing.

1.1.4 The Optimal Power Flow Problem

A main part of this dissertation (see Chapter 5) is to study the non-convex OPF problem

via the optimization dynamics approach. The OPF problem is an important economic dispatch

problem that has a long research history.
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In power systems, an OPF problem seeks an optimal solution of bus voltage magnitudes and

phase angles that minimizes a given generation cost, subject to the power balance at each bus

and other operating constraints. The power balance is characterized by power flow equations,

and the operational constraints include voltage magnitude limits, line flow limits, etc.

The OPF problem was first studied by Carpentier (1962). Since power flow equations are

quadratic, OPF problems can be in general formulated as quadratically constrained quadratic

programmings (QCQPs). It has been recognized that OPF problems are inherently non-convex

and hence they are difficult to solve.

The OPF problem has been widely studied over the past fifty years, and numerous solution

methods have been developed. Some classical methods include gradient method, e.g., Tinney

and Hart (1967) and Dommel and Tinney (1968), Newton’s method Sun et al. (1984), linear

programming Alsac et al. (1990), and interior-point method, e.g., Wu et al. (1994) and Wei et

al. (1998). However, none of these conventional techniques can guarantee global optimality.

To overcome the weak searching capabilities, several heuristic, random search algorithms

have also been attempted for OPF problems, e.g., Hartati and El-Hawary (2001), Abido (2002),

Han and Lu (2008), and Mahdad et al. (2010). Nevertheless, all these methods typically lack

computation efficiency for large scale OPF problems. Readers may refer to Frank et al. (2012a)

and Frank et al. (2012b) for comprehensive surveys about the existing OPF solutions.

Recent work Lavaei and Low (2012) has theoretically shown that under certain conditions

there is no optimal duality gap between the primal non-convex OPF problem and its SDP dual

relaxation. When strong duality holds, one is able to recover a global OPF solution from its

associated SDP dual, which can be solved efficiently by using convex optimization softwares.

This result has pointed out a promising approach of studying non-convex OPF problems via

convex SDP or second-order cone programming (SOCP) relaxations.

Tutorials Low (2014a) and Low (2014b) have summarized the convex relaxation results for

OPF problems developed in the past few years. The conclusion is that power network topology

plays a key role in determining whether the relaxation is exact or not. Specifically, both SDP

and SOCP relaxations are equally exact for radial (tree) networks, but for mesh networks the

SDP relaxation is strictly tighter than the corresponding SOCP relaxation.
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Although counterexamples exist in Lesieutre et al. (2011), numerical experience suggests

that the SDP relaxation tends to be exact for many OPF cases. As for those counterexamples,

Josz et al. (2015) has proposed another numerical SDP method, known as the moment-SOS

(sum-of-squares), to search global solutions, but at the expense of a higher computation time.

However, we note that all of above OPF algorithms require centralized computing, which is

not suitable for the distributed physical structure of future power systems. Indeed, the future

cyber-enabled electric power grids, also known as smart grids, can be envisioned to operate

based on distributed transactions and energy management. Future smart grids also desire to

embed computation into physical processes, see Li et al. (2010) and Rajkumar et al. (2010).

To address these challenges, we apply the continuous-time optimization dynamics to seek

global OPF solutions. The optimization dynamics treats each bus in the power network as an

intelligent computing agent, which only requires the local information to update the decision

variables. Therefore, it topologically suits the physical structure of the power network.

Most existing distributed OPF algorithms, e.g., Baldick et al. (1999), Nogales et al. (2003),

Hug-Glanzmann and Andersson (2009), Lam et al. (2012), Dall’Anese et al. (2013), and Erseghe

(2014), are developed based on a regional optimization intuition. To be specific, they first divide

the power network into several regions, each region solves its own sub-OPF and then coordinates

with others to yield the final solution. In contrast, our approach exploits the distributed OPF

structure deeply into the bus level.

Also treating each individual bus as an intelligent computing unit, Bolognani and Zampieri

(2013) and Cavraro et al. (2014) have designed gossip-like distributed algorithms for the optimal

reactive power compensation and optimal power generation problems, based on a linearized

approximation of injected power. This work, however, studies the non-linear power flow without

approximations.

1.2 Organization of This Dissertation

This dissertation is organized as follows. In Chapter 2, we briefly review some mathematical

preliminaries that are necessary for the presentation of this work, including basic concepts and

results in graph theory, optimization theory, and non-linear dynamical systems.
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Chapter 3 presents our main approach, i.e., the continuous-time optimization dynamics, for

studying general non-convex problems. A convergence analysis for the optimization dynamical

system is also developed in this chapter. Specifically, if there is a strictly complementary KKT

point at which the evaluated Hessian of the associated Lagrangian with respect to the primal

variable is positive definite, then the optimization dynamics locally has a unique solution which

converges asymptotically to this KKT point.

Once the optimization dynamical system associated with a non-convex problem converges

to a KKT equilibrium, then one would like to further check whether this KKT point is globally

optimal or not, since KKT conditions are only necessary for the local optimality of non-convex

problems. So, in Chapter 4, we focus on a special class of non-convex optimizations, namely, the

non-convex QCQPs, and develop an easily checkable necessary and sufficient global optimality

condition for the KKT equilibrium points. We apply the convergence analysis result that has

been derived in Chapter 3 to the optimization dynamics associated with non-convex QCQPs.

We also present a MAXCUT example to demonstrate that, for certain networked non-convex

QCQPs, our optimization dynamics exhibits a naturally distributed computation structure.

Moreover, we show by simulations that our optimization dynamics approach can be successfully

applied to solve the non-convex phase recovery problems as well as convex SOCPs.

In Chapter 5, we investigate the so-called OPF problem, which can be in general formulated

as a networked non-convex QCQP. Our optimization dynamics approach could be applied here

because it has been theoretically proved that strong duality holds for many OPF cases. First,

we show that the optimization dynamical system associated with OPF problems possesses an

intrinsic distributed structure, which makes our OPF algorithm naturally suit the topology of

power networks. Then we compare our approach with the SDP dual relaxation approach, and

we discover that there exist counterexamples whose associated optimization dynamical systems

can still converge to saddle-points but the corresponding SDP dual relaxations fail to provide

strong duality. Such a discovery implies the existence of a stronger implicit Lagrange dual to

the OPF problem, and a more general applicability of our OPF algorithm. Finally, by applying

the convergence analysis in Chapter 3 again, we prove the locally asymptotic stability for the

saddle-points associated with OPF problems.
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Our next chapter deals with digital implementations of the continuous-time optimization

dynamical systems. Specifically, we develop distributed numerical solvers for the optimization

dynamics, based on the backward Euler’s method and iterative matrix inversion algorithms.

The backward Euler’s method guarantees the solvers’ robustness to large simulation step sizes,

and meanwhile the iterative matrix inversion maintains the distributed computation structure.

Nevertheless, in each iteration, we notice that these distributed solvers need to use the network

topology several times in order to compute an update, which implies that the discretization of

our optimization dynamics approach may somehow destroy the intrinsic distributed structure.

In Chapter 7, we revisit OPF problems. Different from what we have studied in Chapter 5,

we consider the SDP relaxation approach there. We notice that the size of the SDP relaxation

does not scale nicely when the power network expands. To meet this challenge, we exploit the

sparsity of power network further and decompose the standard SDP relaxation into a bunch

of smaller SDP relaxations. Now each bus in the network needs to locally solve a decomposed

SDP relaxation that is associated with itself, and finally a global OPF solution can be achieved

by running a consensus over the whole network. We show that our decomposed SDP relaxation

scales linearly as the power network expands, so it greatly fastens the OPF computation speed.

In the last chapter, we present concluding remarks of this dissertation and several possible

directions for future research.

1.3 The Main Contributions

This dissertation has five main contributions, which are listed below.

Firstly, we present a convergence analysis for the continuous-time optimization dynamics

with a correct proof that resolves some gaps in Arrow and Hurwicz (1958).

In Chapter 3, we present a similar convergence result (Theorem 10) as Arrow and Hurwicz

(1958). However, Arrow and Hurwicz (1958) did not choose a valid Lyapunov function in its

proof. To be specific, Arrow and Hurwicz (1958) used the square distance from the trajectory to

the equilibrium as a Lyapunov candidate. It also claimed that the derivative of this Lyapunov

candidate with respect to time would be negative definite. But this is not correct. We can give

counterexamples showing that the corresponding derivative may be only negative semi-definite.
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In order to further prove the asymptotic convergence, one has to invoke LaSalle’s invariance

principle, which, we believe, had not been invented by the time when Arrow and Hurwicz (1958)

was first published. Therefore, the Lyapunov candidate invented by Arrow and Hurwicz (1958)

becomes questionable. In our correct proof, we alternatively construct a quadratic Lyapunov

candidate by solving the associated Lyapunov equation. We can show that its derivative with

respect to time is always negative definite, and hence we need not to invoke LaSalle’s invariance

principle anymore.

Secondly, we derive a necessary and sufficient condition that characterizes global optimality

for general non-convex QCQPs.

Under mild constraint qualification assumptions, it is well known that KKT conditions are

necessary and sufficient for the global optimality of convex problems. As for those non-convex

optimizations, KKT conditions become only necessary for local optimality. It is also a known

fact from Boyd and Vandenberghe (2004) that if a non-convex QCQP has only one quadratic

inequality constraint, then strong duality holds. That is to say, KKT points and saddle-points

are still equivalent to each other in this case.

This work generalizes the strong duality condition for a non-convex QCQP with any finite

number of equality or inequality constraints. Our result states the fact that any KKT point of a

non-convex QCQP is globally optimal if and only if it satisfies an extra linear matrix inequality

(LMI) condition. If one QCQP is convex or degrades to an LP, then that extra LMI condition

will be automatically satisfied. Therefore, under these circumstances, KKT conditions become

again necessary and sufficient for global optimality.

Thirdly, to the best of our knowledge, this work is the first that applies the continuous-time

optimization dynamics approach to search saddle-points for non-convex QCQPs. We discover

that, for certain networked QCQPs, the associated optimization dynamics exhibits an intrinsic

distributed computation structure.

Given a networked optimization problem, we treat each node in the network as an individual

computing agent. We also assign each node with a group of primal and Lagrange dual variables.

The associated optimization dynamics is said to be distributed provided that each computing

agent only uses the local information from neighboring nodes to compute its own gradients.
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In Chapter 5, we give a detailed discussion about the distributed computation structure of

the optimization dynamics associated with OPF problems. This property also makes our OPF

algorithm naturally suitable for the topology of power networks. Compared with those existing

distributed OPF algorithms that are developed based on regional decomposition intuitions,

our continuous-time optimization dynamics approach exploits the distributed OPF structure

deeply into the bus level. The fact that OPF problems can be solved in a completely distributed

manner, as far as we know, has long been missed in literature.

We note that the distributed computation structure is a special property only possessed by

the continuous-time optimization dynamics. Due to the limitations of discretization methods,

such a distributed computation structure would be destroyed somehow when implemented in

a discrete-time fashion.

Fourthly, by applying the optimization dynamics, we discover the existence of a stronger

Lagrange dual relaxation to the non-convex OPF problem.

Lavaei and Low (2012) has theoretically proved that for many cases strong duality holds

between the primal non-convex OPF and its SDP dual relaxation. In this work we show that

whenever the SDP dual maintains strong duality, the associated optimization dynamics must

have a saddle-point as equilibrium. On the other hand, we provide counterexamples showing

that the optimization dynamical system may still converges to a saddle-point even though the

SDP dual loses strong duality. Combining these implies the existence of a stronger Lagrange

dual relaxation to the OPF problem. By the same reason, we conclude that our optimization

dynamics can find global OPF solutions under more general conditions than the existing SDP

dual relaxation approach.

Lastly, by fully exploiting the natural sparsity of power networks, we further decompose the

standard SDP relaxation of OPF into a bunch of smaller SDPs. Then each bus in the power

network can locally solve its own decomposed SDP and meanwhile a global OPF solution could

be achieved by operating a consensus over the whole power network. Besides, the size of our

decomposed SDP relaxation scales linearly as the power network expands and hence it may

greatly fasten the OPF computation speed. When compared with Molzahn et al. (2013) and

Madani et al. (2015), our approach is the fastest for large-scale OPF examples.
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CHAPTER 2. PRELIMINARIES

This chapter provides notations and mathematical preliminaries that are necessary for the

future development of our work. Some basic concepts and results in graph theory, optimization

theory, and dynamical systems will be briefly reviewed here.

2.1 Notations

The following notations will be used throughout this dissertation. The symbol R denotes

the one-dimensional real line. Besides, Rn and Rn+, respectively, denote the real, n-dimensional

vector space and its non-negative orthant. Each x ∈ Rn is assumed to be a column vector and

we use xT to denote its transpose.

The set of complex numbers is denoted by C. For a complex number z = a + ib, where

a, b ∈ R, we use i to denote the imaginary unit and z∗ to denote its conjugate. Besides, Re{z}

and Im{z}, respectively, return the real and imaginary parts of z.

The set of all m×n real matrices is denoted by Rm×n. The set of all n×n real, symmetric

matrices is denoted by Sn. Given A ∈ Rm×n, A(k, l) denotes the (k, l) entry of A and A(k, :)

denotes the k-th row of A. When A is square, Tr{A} returns the trace of A and λi(A) stands

for the i-th eigenvalue of A. Moreover, if A ∈ Sn, then the notation A � 0 (A � 0) means that

A is positive definite (positive semi-definite).

2.2 Basics Concepts in Graph Theory

In this work, we model networks as undirected graphs.

Let G = (V, E) denote a graph with the set of nodes V and the set of edges E ⊆ V × V. We

assume that |E| = m and |V| = n, where | · | returns the cardinality of a countable set.
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For each edge e ∈ E that connects nodes i and j, we denote it as an unordered pair (i, j).

Moreover, for each node v ∈ V, we denote N (v) := {u | ∀(u, v) ∈ E} as the set that contains

all the neighbors of v.

An edge e = (i, j) is called a self-loop if i = j. Two edges e1 = (i1, j1) and e2 = (i2, j2) are

said to be parallel if i1 = i2 and j1 = j2. Throughout this work we assume that graph G has

no self-loops or parallel edges.

Definition 1. Let e = (p, q) with p < q be the i-th edge in E and let v be the j-th node in V.

The edge incidence matrix E ∈ Rm×n is defined by

E(i, j) :=


1 if v = p

−1 if v = q

0 otherwise.

(2.1)

Thus each row of E has exactly one 1 and one −1 element. Using the edge incidence matrix,

we can further define the Laplacian and weighted Laplacian matrices associated with graph G.

Definition 2. The Laplacian matrix L ∈ Sn associated with graph G is defined as

L := ETE. (2.2)

Definition 3. Let Σ = Diag(σ1, · · · , σm) be a given weight matrix, whose each diagonal entry

σi > 0 represents the weight assigned to edge ei, for 1 ≤ i ≤ m. The weighted Laplacian

matrix W ∈ Sn associated with graph G is defined as

W := ETΣE. (2.3)

Then it easily follows from (2.2) that L � 0, i.e., all the eigenvalues of L are non-negative.

Suppose that the n eigenvalues of L can be arranged as λn(L) ≥ · · · ≥ λ2(L) ≥ λ1(L). We

know that λ1(L) must be zero because L1 = 0, where 1 ∈ Rn denotes the vector with all 1

entries. Besides, the second least eigenvalue λ2(L) reflects the connectivity of graph G.

Theorem 1. [Newman (2010)] Let G = (V, E) be a graph and also let λn(L) ≥ · · · ≥ λ2(L) ≥

λ1(L) = 0 be the n eigenvalues of the associated Laplacian matrix. Then G is connected if and

only if λ2(L) > 0.

Assumption 1. All graphs studied in this work are assumed to be connected.
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2.3 Constrained Optimizations

Consider a general optimization problem with both equality and inequality constraints

minimize
x∈Rn

f(x) (2.4a)

subject to gi(x) ≤ 0, i = 1, · · · , p (2.4b)

hj(x) = 0, j = 1, · · · , q (2.4c)

where f : Rn → R, gi : Rn → R, and hj : Rn → R, for i = 1, · · · , p and j = 1, · · · , q, are all

continuously differentiable functions. In this dissertation, we may not assume that optimization

(2.4a) – (2.4c) is convex.

Let x̄ ∈ Rn be a feasible point for optimization (2.4a) – (2.4c). Define I as the set that

contains all indices corresponding to the active inequality constraints when evaluated at x̄, i.e.,

I := {i | gi(x̄) = 0, i = 1, · · · , p}.

Definition 4. Given a feasible point x̄ ∈ Rn for optimization (2.4a) – (2.4c), let ∇gi(x̄) ∈ Rn

and ∇hj(x̄) ∈ Rn, respectively, denote the gradients of gi(x) and hj(x) evaluated at x̄. We

say that x̄ is regular if all the gradients ∇gr(x̄) and ∇hj(x̄), for r ∈ I and j = 1, · · · , q, are

linearly independent.

Remark 1. The concept of regularity is adopted from Bertsekas (1982) and it can be interpreted

as a constraint qualification condition, see Lasserre (2010).

Assumption 2. All optimizations studied in this work are assumed to have regular solutions.

Definition 5. The Lagrangian L : Rn×Rp+×Rq → R associated with problem (2.4a) – (2.4c)

is defined by

L(x, λ, ν) := f(x) +

p∑
i=1

λigi(x) +

q∑
j=1

νjhj(x) (2.5)

where λi and νj, for i = 1, · · · , p and j = 1, · · · , q, respectively, are the Lagrange multipliers

associated with constraints gi(x) ≤ 0 and hj(x) = 0.

Remark 2. Because λi, for i = 1, · · · , p, are the Lagrange multipliers associated with inequality

constraints gi(x) ≤ 0, we require that λi ≥ 0 for all indices i.



www.manaraa.com

16

Theorem 2. [KKT optimality conditions, Lasserre (2010)] Let x̄ ∈ Rn be a local minimizer

for problem (2.4a) – (2.4c). If x̄ is regular, then there exist λ̄ ∈ Rp+ and ν̄ ∈ Rq such that

∇xL(x̄, λ̄, ν̄) = 0 (2.6a)

gi(x̄) ≤ 0, ∀i = 1, · · · , p (2.6b)

hj(x̄) = 0, ∀j = 1, · · · , q (2.6c)

λ̄i ≥ 0, ∀i = 1, · · · , p (2.6d)

λ̄igi(x̄) = 0, ∀i = 1, · · · , p. (2.6e)

Remark 3. The last KKT condition (2.6e) is also known as the complementary slackness.

Definition 6. A vector (x̄, λ̄, ν̄) ∈ Rn × Rp+ × Rq is said to be a Karush-Kuhn-Tucker

(KKT) point of optimization (2.4a) – (2.4c) if it satisfies conditions (2.6a) – (2.6e).

Definition 7. A KKT point (x̄, λ̄, ν̄) is said to be strictly complementary if

gi(x̄) < 0, λ̄i = 0 or gi(x̄) = 0, λ̄i > 0 ∀i = 1, · · · , p. (2.7)

When optimization (2.4a) – (2.4c) is convex, KKT conditions (2.6a) – (2.6e) become also

sufficient for characterizing its local optimum. Furthermore, because any local minimizer will

be a global solution to a convex optimization, KKT conditions (2.6a) – (2.6e) turn out to be

necessary and sufficient optimality conditions for optimization (2.4a) – (2.4c) if it is convex.

Definition 8. A vector (x?, λ?, ν?) is said to be a saddle-point for the Lagrangian L(x, λ, ν)

if for all x ∈ Rn, λ ∈ Rp+, and ν ∈ Rq

L(x?, λ, ν) ≤ L(x?, λ?, ν?) ≤ L(x, λ?, ν?). (2.8)

Theorem 3. [Boyd and Vandenberghe (2004)] A vector (x?, λ?, ν?) is a saddle-point for the

Lagrangian L(x, λ, ν) if and only if x? is a primal optimum to optimization (2.4a) – (2.4c),

(λ?, ν?) is a dual optimum, and the optimal duality gap is zero.

Under mild constraint qualification conditions (Slater’s condition or regularity condition),

strong duality holds for convex problems. In this case, therefore, KKT points and saddle-points

are equivalent to each other. However, as for general optimization problems, a KKT point may

not necessarily be a saddle-point.
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2.4 Sum of Squares Relaxations

Definition 9. A multivariate polynomial p(x) := p(x1, · · · , xn) is said to be a sum of squares

(SOS) if there exists a series of polynomials {fi(x)}mi=1 such that

p(x) =

m∑
i=1

f2
i (x). (2.9)

It is clear that if a polynomial p(x) is an SOS then p(x) ≥ 0 for all x ∈ Rn. However, the

converse statement may not be true.

Theorem 4. [Papachristodoulou et al. (2013)] In the following cases, the sum of squares

condition and non-negativity are equivalent:

• Univariate polynomials, in any even degree;

• Quadratic polynomials, in any number of variables;

• Quartic polynomials in two variables.

Consider the unconstrained polynomial optimization

minimize
x∈Rn

p(x) (2.10)

where p(x) with x ∈ Rn is a multivariate polynomial of degree 2d. As is well known, problem

(2.10) is NP-hard when d ≥ 2. However, a lower bound can always be efficiently computed

using the following SOS relaxation

maximize γ (2.11)

subject to p(x)− γ �SOS 0 (2.12)

where the inequality notation g �SOS 0 means that polynomial g is an SOS.

The SOS relaxation (2.11) – (2.12) was first proposed by Shor (1987). It is equivalent to an

semi-definite programming (SDP) and hence is convex. If the SOS relaxation (2.11) – (2.12) is

tight, then we can recover a global solution to problem (2.10). Practical experience indicates

that in many cases the above SOS relaxation approach leads to exact optimal solutions.
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2.5 Continuous-Time Dynamical Systems

This work models a dynamical system using a first-order ordinary differential equation

ẋ(t) = f(t, x(t)), ∀t ≥ 0 and x(t0) = x0 (2.13)

where t denotes time; x(t) ∈ Rn denotes an n-dimensional vector at time t; and the function

f : R+ × Rn → Rn associates, with each value of t and x(t), a corresponding n-dimensional

vector. The quantity x(t) is generally referred to as the state of the system at time t. It is

clear that (2.13) represents a continuous-time system.

The system (2.13) is said to be autonomous if the function f does not explicitly depend

on time t; that is, ẋ = f(x). For an autonomous system, the equilibrium points are the real

roots of the equation f(x) = 0.

We present below several fundamental properties regarding the solution to the dynamical

system (2.13). All of these results are cited from Khalil (2002).

Theorem 5. [Local Existence and Uniqueness] Let f(t, x) be piecewise continuous in time t

and satisfy the Lipschitz condition

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖

for all x, y ∈ Br = {x ∈ Rn | ‖x− x0‖ ≤ r} and all t ∈ [t0, t1]. Then, there exists some δ > 0

such that system (2.13) has a unique solution over [t0, t0 + δ].

Theorem 5 is a local result because it guarantees existence and uniqueness of the solution

only over an interval [t0, t0 + δ], where δ may be very small. Since we have no control on δ,

we cannot ensure existence and uniqueness of the solution over a given time interval [t0, t1].

One may try to extend the interval of existence by repeated applications of the local theorem.

However, in general, the interval of existence cannot be extended indefinitely. The conditions

of Theorem 5 will cease to hold when the system’s state escapes to infinity at a finite time.

Therefore, we require additional conditions to establish the existence of a unique solution over

the time interval [t0, t1].
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Theorem 6. [Global Existence and Uniqueness] Suppose that f(t, x) is piecewise continuous

in time t and satisfies

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖

for all x, y ∈ Rn and all t ∈ [t0, t1]. Then system (2.13) has a unique solution over [t0, t1].

In view of the conservative nature of the global Lipschitz condition, it would be useful to

have a global existence and uniqueness theorem that requires the function f to be only locally

Lipschitz. The next theorem achieves that at the expense of having to know more about the

solution of the system.

Theorem 7. Let f(t, x) be piecewise continuous in t and locally Lipschitz in x for all t ≥ t0

and all x in a domain D ⊂ Rn. Let W be a compact subset of D, x0 ∈ W , and suppose that

every solution of ẋ = f(t, x) with x(t0) = x0 lies entirely in W . Then system (2.13) has a

unique solution for all t ≥ t0.

The trick in applying Theorem 7 is in checking the assumption that every solution lies in a

compact set without actually solving the differential equation. In this regard, the Lyapunov’s

method for studying stability will be very valuable.

Definition 10. Let x = 0 be an equilibrium point of the autonomous system ẋ = f(x), where

f : D → Rn is a locally Lipschitz map from a domain D into Rn. The equilibrium x = 0 is

• stable if, for each ε > 0, there is some δ > 0 such that ‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0;

• asymptotically stable if it is stable and ‖x(0)‖ < δ ⇒ limt→∞ x(t) = 0.

Theorem 8. [Lyapunov’s Stability Theorem] Let x = 0 be an equilibrium of the autonomous

system ẋ = f(x) and D ⊂ Rn be a domain containing x = 0. Let V : D → R be a continuously

differentiable function such that

V (0) = 0, V (x) > 0 in D \ {0}, V̇ (x) ≤ 0 in D (2.14)

then the equilibrium x = 0 is stable. Moreover, if

V̇ (x) < 0 in D \ {0} (2.15)

then the equilibrium x = 0 is asymptotically stable.
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A continuously differentiable function V (x) satisfying (2.14) is called a Lyapunov func-

tion. Moreover, the surface V (x) = c, for some c > 0, is called a Lyapunov surface. The

condition V̇ ≤ 0 implies that when a trajectory crosses a Lyapunov surface V (x) = c, it moves

inside the compact set Ωc = {x ∈ Rn | V (x) ≤ c} and can never leave it again.

Finally, let us present how to construct a Lyapunov function for a linear, time-invariant

system ẋ = Ax, where A ∈ Rn×n. This system has an equilibrium at the origin. When all

eigenvalues of A satisfy Re{λi(A)} < 0, A is called a Hurwitz matrix. It can be shown that

the origin is asymptotically stable if and only if A is Hurwitz.

Theorem 9. A matrix A is Hurwitz if and only if for any given positive definite symmetric

matrix Q there is a positive definite symmetric matrix P that satisfies the Lyapunov equation

PA+ATP = −Q. Moreover, if A is Hurwitz, then P is the unique solution.

By Theorem 9, we can always construct a Lyapunov function V (x) = xTPx with P � 0 for

the linear system ẋ = Ax if A is Hurwitz. When a Q � 0 is given, the corresponding P matrix

can be solved from the Lyapunov equation. Then the derivative of V along the trajectories

of the linear system is given by V̇ (x) = xTPẋ + ẋTPx = xT (PA + ATP )x = −xTQx, which

satisfies condition (2.15).
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CHAPTER 3. THE CONTINUOUS-TIME OPTIMIZATION DYNAMICS

This chapter presents the main approach of our work. Specifically, we would like to study

optimization (2.4a) – (2.4c) via the continuous-time optimization dynamics.

The continuous-time optimization dynamics, also known as the primal-dual dynamics, was

first studied by Arrow and Hurwicz (1958) and Uzawa (1958) for strictly convex programmings.

The former investigated locally strictly convex problems and proved local convergence of the

associated optimization dynamics. The latter obtained a global convergence result for a stronger

setup, requiring an assumption of globally strict convexity. Recently, modern proofs for this

global convergence result have been given by Wang and Elia (2011) and Cherukuri et al. (2016).

Since the seminal work of Arrow, however, the optimization dynamics approach seems to be

mostly forgotten until its new applications for resource allocation Feijer and Paganini (2010),

and power optimizations Ma and Elia (2013), Mallada et al. (2014), and Zhao et al. (2014).

In this work, by applying the continuous-time optimization dynamics, we will show that

certain non-convex networked optimizations can be solved in a completely distributed manner

when strong duality holds and the network is sparsely connected.

This chapter is organized as follows. In Section 3.1, we define the optimization dynamics for

problem (2.4a) – (2.4c). We note that any equilibrium of the optimization dynamical system is

in fact a KKT point. Then we present a local convergence result in Section 3.2, which answers

under what conditions there exists a unique, asymptotically stable solution with respect to the

proposed optimization dynamics. Finally, we give our convergence proof in Section 3.3.

We need to point out here that the optimization dynamics is a hybrid automation, which,

fortunately, can be equivalently modeled by a sequence of dynamical systems, called the R-S-T

systems. Thus, our convergence proof is developed based on showing that each R-S-T system

has a unique solution which shrinks towards the desired equilibrium.
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3.1 Definition of the Optimization Dynamics

Let us consider the general optimization problem (2.4a) – (2.4c). One possible approach

for solving (2.4a) – (2.4c) is to search a saddle-point, if it exists, for the associated Lagrangian

(2.5). We may employ the following continuous-time dynamical system to achieve this goal

ẋ := −∂L(x, λ, ν)

∂x
= −∇xL(x, λ, ν) (3.1a)

λ̇i :=

[
∂L(x, λ, ν)

∂λi

]+

λi

=
[
gi(x)

]+

λi
for i = 1, · · · , p (3.1b)

ν̇j :=
∂L(x, λ, ν)

∂νj
= hj(x) for j = 1, · · · , q (3.1c)

where the positive projection is defined as

[
gi(x)

]+

λi
:=


gi(x) if λi > 0 or gi(x) > 0

0 otherwise.

The above definition of positive projection is adopted from Feijer and Paganini (2010). We can

show that it is equivalent to the dynamics approach studied in Arrow and Hurwicz (1958) and

Uzawa (1958). When started from an initial point λ0 ∈ Rp+, dynamics (3.1b) guarantees that

the trajectory of λ will never escape from Rp+.

By viewing the primal variable x and the dual variables λ and ν as two players participating

in a min-max game, dynamics (3.1a) – (3.1c) can be interpreted as follows: The primal player

tries to minimize the Lagrangian (2.5) by moving against the gradient with respect to itself,

while the dual variables follow their own gradient directions in order to maximize the Lagrangian

(2.5). This evolution stops at an equilibrium of dynamics (3.1a) – (3.1c). Such an equilibrium

must be a KKT point since it satisfies (2.6a) – (2.6e). If we further assume that optimization

(2.4a) – (2.4c) is convex, this KKT point is exactly a saddle-point for the Lagrangian (2.5).

The continuous-time dynamics (3.1a) – (3.1c) has multiple names in literature. For example,

it was referred to as a Arrow-Hurwicz system in Uzawa (1958) and as a primal-dual gradient

dynamics in Feijer and Paganini (2010). In this work, we follow the terminology used in Wang

and Elia (2011) and call dynamics (3.1a) – (3.1c) as an optimization dynamical system or an

optimization dynamics.
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3.2 A Local Convergence Result

In this section, we study the convergence behavior of dynamics (3.1a) – (3.1c). Specifically,

one may pose the following questions: 1) Does dynamics (3.1a) – (3.1c) have a unique solution?

2) If yes, then under what conditions will an equilibrium be asymptotically stable with respect

to dynamics (3.1a) – (3.1c)? These questions can be answered by the next theorem, which is

also the main result of this chapter.

Theorem 10. Suppose that problem (2.4a) – (2.4c) has a strictly complementary KKT point

(x?, λ?, ν?). Also suppose that x? is regular. If the Hessian of the Lagrangian (2.5) with respect

to x is positive definite when evaluated at (x?, λ?, ν?), then there is a small neighborhood around

(x?, λ?, ν?) such that

• Optimization dynamics (3.1a) – (3.1c) has a unique solution within this neighborhood;

• Any trajectory starting inside this neighborhood converges to (x?, λ?, ν?) asymptotically.

3.3 The Convergence Proof

We note that dynamics (3.1a) – (3.1c) is a hybrid automaton due to the positive projec-

tions. For more details about hybrid automata, the reader may refer to Lygeros et al. (2003).

Nevertheless, the conditions proposed in Lygeros et al. (2003) are not very convenient to be

applied here to show existence and uniqueness of the solution. Moreover, those conditions only

guarantee that the solution to a hybrid automaton is non-blocking, which cannot rule out the

possibilities of Zeno solutions. Therefore, in this work, we follow the approach proposed by

Arrow and Hurwicz (1958) and also resolve some technical gaps in it.

The basic idea of the convergence proof is to open the brackets of positive projections in

(3.1b) and to equivalently model dynamics (3.1a) – (3.1c) by a sequence of R-S-T systems. We

would like to show that each R-S-T system has a unique solution that is shrinking towards the

desired equilibrium. Then we can piece together the solutions of the R-S-T systems following

the correct time sequence, and finally obtain a unique and asymptotically stable solution for

dynamics (3.1a) – (3.1c).
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When showing asymptotic stability of the R-S-T systems, Arrow and Hurwicz (1958) chose

the square distance between the trajectory and the desired equilibrium as a Lyapunov function

candidate. But this Lyapunov function candidate was not valid, since its derivative along the

trajectories was only negative semi-definite. To further prove asymptotic stability, one must

invoke LaSalle’s invariance principle, which, however, had not been invented before Arrow and

Hurwicz (1958) was published.

We present a counterexample below to illustrate in details the technical gaps that exist in

Arrow and Hurwicz’s proof.

Example 1. Consider a strictly convex optimization problem

minimize (x1 − 1)2 + (x2 − 3)2 (3.2a)

subject to x1 + x2 − 2 = 0. (3.2b)

The Lagrangian associated with problem (3.2a) – (3.2b) is given by L(x1, x2, λ) := (x1 − 1)2 +

(x2 − 3)2 + λ(x1 + x2 − 2) and hence the associated optimization dynamics can be written as

ẋ1 := −2(x1 − 1)− λ (3.3a)

ẋ2 := −2(x2 − 3)− λ (3.3b)

λ̇ := x1 + x2 − 2. (3.3c)

There exits a unique saddle-point (x?1, x
?
2, λ

?) = (0, 2, 2) for the Lagrangian L. We can verify

that the Hessian of the Lagrangian L with respect to the primal variable x is positive definite

when evaluated at the saddle-point (0, 2, 2). Moreover, regularity and strict complementarity

conditions are both satisfied by this saddle-point.

Then, following the convergence proof in Arrow and Hurwicz (1958), we choose the square

distance of the dynamics’ trajectory from the saddle-point V := x2
1 + (x2− 2)2 + (λ− 2)2 as the

Lyapunov candidate. Taking the derivative of V with respect to time along the trajectories of

dynamics (3.3a) – (3.3c) yields

V̇ = −2x1(2x1 − 2 + λ)− 2(x2 − 2)(2x2 − 6 + λ) + 2(λ− 2)(x1 + x2 − 2)

= −4x2
1 − 4(x2 − 2)2 (3.4)
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where all terms involving the dual variable λ have been canceled out. Then V̇ is only negative

semi-definite, because we have V̇ = 0 along the whole vector space (0, 2, λ) with any λ ∈ R+. To

further prove the asymptotic convergence of the saddle-point (0, 2, 2), one must invoke LaSalle’s

invariance principle. Now we can clearly see that such a square distance cannot be used as a

valid Lyapunov function without the help of LaSalle’s invariance principle.

To bridge these technical gaps, in this work we alternatively choose a quadratic Lyapunov

function by solving the associated Lyapunov equation. We can prove that the derivative of our

Lyapunov function is negative definite along the system’s trajectories, and thus we do not need

to invoke LaSalle’s invariance principle anymore.

Now we are ready to present the proof of Theorem 10.

3.3.1 Initialization

Suppose that (x?, λ?, ν?) is a strictly complementary KKT point of problem (2.4a) – (2.4c).

Define P :=
{

(x, λ, ν) | λ ≥ 0
}

and Bδ :=
{

(x, λ, ν) | ‖(x, λ, ν)− (x?, λ?, ν?)‖ ≤ δ
}

as a

closed ball centered at (x?, λ?, ν?) with radius δ. A neighborhood of (x?, λ?, ν?) in P is defined

of the form Bδ ∩P. Choose a small δ0 > 0 such that for any point (x, λ, ν) ∈ Bδ0 ∩P, we have

(i) λi > 0 if i ∈ I and (ii) gi(x) < 0 if i /∈ I.

Recall that I is defined in Section 2.3 as the set containing indices associated with the active

inequality constraints that are evaluated at (x?, λ?, ν?). Both parts of this initialization are

achievable, since λ?i > 0 for all i ∈ I (by the strict complementarity), and the functions gi(x)

are continuous and gi(x
?) < 0 for all i /∈ I.

3.3.2 The R-S-T Systems

Let 0 < δ? ≤ δ0 be another small positive number, and the value of δ? will be determined

later (see the proof of Lemma 2). Let (x0, λ0, ν0) be an arbitrary initial point that belongs

to the neighborhood Bδ? ∩ P. Elements of the initial multiplier λ0 can be divided into three

classes based on their values and their indices: (i) λ0
r > 0 where r ∈ I; (ii) λ0

s > 0 where s /∈ I;

and (iii) λ0
t = 0 where t /∈ I.
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According to the above classification, we define the following (R0, S0, T0) system

ẋ := −∇xL(x, λ, ν) (3.5a)

ν̇j := hj(x) for j = 1, · · · , q (3.5b)

λ̇r := gr(x) if r ∈ I (3.5c)

λ̇s := gs(x) if s /∈ I and λ0
s > 0 (3.5d)

λ̇t := 0 if t /∈ I and λ0
t = 0. (3.5e)

Note that the (R0, S0, T0) system (3.5a) – (3.5e) is locally Lipschitz everywhere in x, λ, and ν,

since functions f(x), gi(x), and hj(x), for all i = 1, · · · , p and j = 1, · · · , q, are continuously

differentiable. We would like to show that the (R0, S0, T0) system has a unique solution inside

the neighborhood Bδ? ∩ P.

Define the errors x̃ := x − x?, λ̃ := λ − λ?, and ν̃ := ν − ν?. Then the (R0, S0, T0) system

can be equivalently transformed into the following error dynamics. Here, we apply the Taylor

expansion at (x?, λ?, ν?).

˙̃x = −H(x?, λ?, ν?)x̃−
∑
j

∇hj(x?)ν̃j −
∑
r

∇gr(x?)λ̃r −
∑
s

∇gs(x?)λ̃s +O(x̃) (3.6a)

˙̃νj = ∇hj(x?)T x̃+Oj(x̃) (3.6b)

˙̃
λr = ∇gr(x?)T x̃+Or(x̃) (3.6c)

˙̃
λs = gs(x

?) +∇gs(x?)T x̃+Os(x̃) (3.6d)

˙̃
λt = 0 (3.6e)

where H(x?, λ?, ν?) denotes the Hessian of the Lagrangian (2.5) with respect to x evaluated at

(x?, λ?, ν?). We have also applied the KKT condition (2.6a) in dynamics (3.6a), hj(x
?) = 0 in

dynamics (3.6b), gr(x
?) = 0 in dynamics (3.6c), and λ̃t ≡ 0 in dynamics (3.6e), respectively.

Moreover, O(x̃), Oj(x̃), Or(x̃), and Os(x̃) are all higher order terms in x̃.

Lemma 1. Suppose that all the conditions in Theorem 10 hold. Let all indices r ∈ I be labeled

as r1, · · · , r|I|, where |I| denotes the cardinality of I. Define D(x?) as the matrix that stacks
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all the gradient vectors

D(x?) :=

[
∇h1(x?) · · · ∇hq(x?) ∇gr1(x?) · · · ∇gr|I|(x?)

]
∈ Rn×(q+|I|).

Then the Jacobian

J :=

−H(x?, λ?, ν?) −D(x?)

D(x?)T 0

 ∈ R(n+q+|I|)×(n+q+|I|)

is Hurwitz, i.e., all eigenvalues of J have negative real parts.

Proof of Lemma 1. Because the two diagonal blocks of the Jacobian J are respectively given

by −H(x?, λ?, ν?) ≺ 0 and 0, according to the Bendixson’s Theorem in Marshall and Olkin

(1979), all eigenvalues of J must have non-positive real parts. To further prove J is Hurwitz,

we need to show that J has no zero or purely imaginary eigenvalues.

Let us first suppose, for the sake of contradiction, that J has a zero eigenvalue with an

associated eigenvector z =
[
zT1 zT2

]T 6= 0. That is, we have

−H(x?, λ?, ν?)z1 −D(x?)z2 = 0 (3.7)

D(x?)T z1 = 0. (3.8)

Left-multiplying (3.7) with zT1 yields

−zT1 H(x?, λ?, ν?)z1 − zT1 D(x?)z2 = −zT1 H(x?, λ?, ν?)z1 = 0 (3.9)

where we have applied (3.8) in the second step. Since H(x?, λ?, ν?) � 0, (3.9) implies z1 = 0.

Substituting z1 = 0 back into (3.7) we get D(x?)z2 = 0. Also, by the regularity Assumption 2,

D(x?) has a full column rank, which implies z2 is also zero. This contradicts our assumption

that z 6= 0. Hence, J does not have any zero eigenvalues.

Next, for the sake of contradiction, let us suppose that J has a pair of purely imaginary

eigenvalues ±iµ, where µ ∈ R and µ > 0. Let a+ ib 6= 0 be an eigenvector associated with the

eigenvalue iµ, where a =
[
aT1 aT2

]T
and b =

[
bT1 bT2

]T
are real vectors. So we have

J(a+ jb) = iµ(a+ ib) = −µb+ iµa. (3.10)
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which implies that Ja = −µb and Jb = µa. Now left-multiplying these two identities with aT

and −bT , respectively, we obtain

aTJa = −µaT b = −µbTa = −bTJb. (3.11)

However, we also notice that

aTJa = −aT1 H(x?, λ?, ν?)a1 ≤ 0 and bTJb = −bT1 H(x?, λ?, ν?)b1 ≤ 0. (3.12)

Hence, we must have aT1 H(x?, λ?, ν?)a1 = bT1 H(x?, λ?, ν?)b1 = 0, which implies a1 = b1 = 0

since H(x?, λ?, ν?) � 0. Thus Ja = −µb and Jb = µa can be simplified as D(x?)a2 = −µb1 = 0

and D(x?)b2 = µa1 = 0. Again, applying the regularity Assumption 2 that D(x?) has a full

column rank, we must have a2 = b2 = 0, which contradicts our assumption that a + ib 6= 0.

Therefore, J does not have any purely imaginary eigenvalues, either.

Lemma 1 can help us construct a Lyapunov function for the error dynamics (3.6a) – (3.6e).

Lemma 2. Suppose that all the conditions in Theorem 10 hold. There is a Lyapunov function

V and a small positive number δ? such that the derivative V̇ along the trajectories of the error

dynamics (3.6a) – (3.6e) is strictly less than zero inside the closed neighborhood Bδ? ∩ P.

Proof of Lemma 2. As we have shown in Lemma 1, the Jacobian J is a Hurwitz matrix under

the conditions of Theorem 10. Hence, by Theorem 9, we know that for any given symmetric

Q � 0 there is a unique symmetric P � 0 satisfying PJ + JTP = −Q. Now suppose that

P =

P11 P12

P T12 P22

 � 0

is the corresponding solution to the Lyapunov equation, with blocks P11, P12, and P22 having

appropriate dimensions. Also define ũ :=
[
ν̃1 · · · ν̃q λ̃r1 · · · λ̃r|I|

]T
∈ Rq+|I|, ṽ :=

[
x̃T ũT

]T ∈
Rn+q+|I|, and w̃ :=

[
O(x̃)T Oj1(x̃) · · · Ojq(x̃) Or1(x̃) · · · Or|I|(x̃)

]T ∈ Rn+q+|I|. Then we may

choose the following Lyapunov candidate

V (x̃, λ̃, ν̃) = ṽTP ṽ +
∑
s

λ̃2
s +

∑
t

λ̃2
t (3.13)

for the error dynamics (3.6a) – (3.6e).
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The derivative of (3.13) along the trajectories of the error dynamics (3.6a) – (3.6e) is

V̇ = −ṽTQṽ + 2ṽTPw̃ + 2

{∑
s

λ̃s

[
gs(x

?) +∇gs(x?)T (x̃− P11x̃− P12ũ) +Os(x̃)
]}

. (3.14)

Let us look at the first two terms −ṽTQṽ + 2ṽTPw̃ in (3.14). Since w̃ is a higher order term

in x̃, we have ‖w̃‖/‖ṽ‖ → 0 as ‖ṽ‖ → 0. Hence, for any ε > 0, there exists a small δ > 0 such

that ‖w̃‖ < ε‖ṽ‖ for all ‖ṽ‖ < δ. Therefore, we have ṽTPw̃ < ε‖P‖‖ṽ‖2 for all ‖ṽ‖ < δ. Let

µmin > 0 denote the minimum eigenvalue of Q. We can choose a δ1 such that ε < 1
2µmin/‖P‖.

Then we have −ṽTQṽ + 2ṽTPw̃ < (2ε‖P‖ − µmin)‖ṽ‖2 < 0 for all ‖ṽ‖ < δ1 and ṽ 6= 0.

We next consider the remaining terms in (3.14). Recall that for all indices s /∈ I, we have

λ?s = 0 and gs(x
?) < 0 by the strict complementarity condition. When the trajectories of λs

remain strictly inside the non-negative orthant, we have λ̃s = λs − λ?s = λs > 0. Moreover,

since the term ∇gs(x?)T (x̃−P11x̃−P12ũ) +Os(x̃) is a function of x̃, λ̃r, and ν̃, we can always

find a small neighborhood of (x?, λ?, ν?) in P with a radius δ2 such that the negative gs(x
?)

terms dominate for all indices s /∈ I, i.e.,

gs(x
?) +∇gs(x?)T (x̃− P11x̃− P12ũ) +Os(x̃) < 0, ∀s /∈ I. (3.15)

Then we choose δ? = min{δ0, δ1, δ2} and the Lyapunov derivative along the trajectories of the

error dynamics (3.6a) – (3.6e) is negative definite over Bδ? ∩ P.

The result of Lemma 2 implies the following facts:

• If started from an initial point (x0, λ0, ν0) ∈ Bδ?∩P and when the λs states remain inside

the positive orthant, the trajectories of x, λr, and ν are shrinking towards x?, λ?r , and ν?

with respect to dynamics (3.5a) – (3.5c).

• Since the trajectories of x, λr, and ν cannot escape from Bδ? ∩P, the λs states will keep

decreasing towards zero with respect to dynamics (3.5d).

• According to dynamics (3.5e), the λt states remain zero all the time.

• Due to the locally Lipschitz continuity as well as the Lyapunov stability, by Theorem 7

the (R0, S0, T0) system (3.5a) – (3.5e) has a unique solution.
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3.3.3 Existence and Uniqueness of the Solution

In this subsection, we present the proof for the first statement of Theorem 10.

Proof of Theorem 10, Statement 1. By the definition of positive projections, the optimization

dynamics (3.1a) – (3.1c) is the same as the (R0, S0, T0) system (3.5a) – (3.5e) when started

from any initial condition (x0, λ0, ν0) ∈ Bδ? ∩P. Hence, dynamics (3.1a) – (3.1c) has the same

solution as the (R0, S0, T0) system until some λs state in the (R0, S0, T0) system reaches zero.

Suppose the states at this time instant is given by (x1, λ1, ν1). We know that (x1, λ1, ν1) still

belongs to Bδ? ∩P. We can redefine the (R1, S1, T1) system based on the new initial condition.

The new dynamics of x, λr, and ν in the (R1, S1, T1) system are the same as those in the

(R0, S0, T0) system. The only difference between the (R1, S1, T1) and the (R0, S0, T0) systems

is that the (R1, S1, T1) system has less λs states and more λt states, because some λs state in

the (R0, S0, T0) system has changed into a λt state in the (R1, S1, T1) system. It is not difficult

to show that the same Lyapunov function (3.13) still works for the (R1, S1, T1) system. Same

as before, by both the locally Lipschitz continuity and the Lyapunov stability, the (R1, S1, T1)

system also has a unique solution.

Repeating the above procedure, there must be a finite K (the number of λs states is finite)

such that the (RK , SK , TK) system starting from the initial condition (xK , λK , νK) ∈ Bδ? ∩ P

does not have any λs states. Moreover, the (RK , SK , TK) system has a unique solution for all

the time due to the disappearance of λs states. We can piece together all the unique solutions

of the K + 1 dynamical systems (R0, S0, T0), · · · , (RK , SK , TK) by following the correct time

sequence, and obtain a unique solution for dynamics (3.1a) – (3.1c). This proves existence and

uniqueness of the solution for the optimization dynamical system.

3.3.4 Locally Asymptotic Stability

In this subsection, we present the proof for the second statement of Theorem 10.

Proof of Theorem 10, Statement 2. As discussed above, there must finally exist a (RK , SK , TK)

system such that it has no λs states. In other words, the (SK , RK , TK) system has only λt

states and λt ≡ λ?t = 0 for all t /∈ I.



www.manaraa.com

31

Moreover, because the derivative of the Lyapunov function (3.13) along the trajectories of

the (RK , SK , TK) system is negative definite over Bδ? ∩P, we conclude that the trajectories of

x, λr, ν are locally asymptotically stable, i.e., limt→∞(x, λr, ν) = (x?, λ?r , ν
?).

3.4 Summary

This chapter has introduced the continuous-time optimization dynamics for solving general

optimization problems. The basic idea of this approach is to seek a KKT point as the dynamical

system evolves. It has been shown that, if there exists a strictly complementary KKT point at

which the evaluated Hessian of the associated Lagrangian with respect to the primal variable is

positive definite, then the optimization dynamics locally has a unique solution which converges

asymptotically to the desired KKT point.

The continuous-time optimization dynamics approach has been successfully applied to solve

convex problems, because the KKT conditions are both necessary and sufficient for optimality

there. As for general optimization problems, however, this may not be true. Therefore, when

a KKT point of a general optimization problem is found, we should also check whether or not

it is a global optimum. In the next chapter, we will discuss this topic in details for a specific

class of optimizations, the non-convex quadratically constrained quadratic programmings.
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CHAPTER 4. THE NON-CONVEX QCQP PROBLEMS

In Chapter 3, we have introduced a continuous-time optimization dynamics approach to

study the general optimization problem (2.4a) – (2.4c) by searching the KKT points. Due to

the possible non-convexity of (2.4a) – (2.4c), however, the KKT conditions are only necessary

for local optimality. Then, once a KKT point is found by our optimization dynamical system,

one would ask whether or not it is a global optimum.

In this chapter, we answer the above question for a specific class of optimizations, namely,

the non-convex quadratically constrained quadratic programmings (QCQPs). The non-convex

QCQPs have widely applications, e.g., Boolean least squares, minimum cardinality problems,

two way partitioning, and polynomial minimizations. Certain problems are classic in networked

optimizations, e.g., the MAXCUT and OPF problems, see d’Aspremont and Boyd (2003) and

Lavaei and Low (2012). However, these problems are NP-hard and difficult to solve. Popular

approaches for solving those non-convex QCQPs are mainly based on convex relaxations.

This chapter, different from all those approaches above, studies the non-convex QCQPs via

the continuous-time optimization dynamics without any convex relaxations. We can show the

fact that, in addition to the KKT necessary conditions, one would only require a linear matrix

inequality (LMI) to equivalently characterize the global optimality for non-convex QCQPs. Our

result says, specifically, that a positive semi-definite Hessian of the associated Lagrangian, with

respect to the primal variable and evaluated at a KKT point, implies the global optimality of a

non-convex QCQP, and vise versa. In other words, under these circumstances KKT points and

saddle-points are equivalent to each other. Moreover, if we assume the saddle-point is isolated,

then we guarantee the asymptotic convergence of optimization dynamics to that saddle-point.

This chapter is organized as follows. In Section 4.1, we present a general formulation for the

non-convex QCQPs and also derive their necessary and sufficient global optimality conditions.
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In Section 4.2, we briefly review two convex relaxations, namely, the Lagrange dual relaxation

and the semi-definite programming (SDP) relaxation, and then we build a connection between

these relaxations. In Section 4.3, we argue that traditional primal-dual optimization methods

such as sub-gradient and ADMM algorithms fail to solve non-convex QCQPs. Then we apply

the optimization dynamics to the non-convex QCQPs in Section 4.4 and present a convergence

analysis. In Section 4.5, we employ a MAXCUT problem example to show that its associated

optimization dynamics is completely distributable. Finally, some more applications including

the phase recovery problem and convex SOCPs are discussed in Sections 4.6 and 4.7.

4.1 Global Optimality Conditions

Consider a non-convex QCQP that is formulated as

minimize
x∈Rn

xTA0x+ bT0 x+ c0 (4.1a)

subject to xTAix+ bTi x+ ci ≤ 0, ∀i = 1, · · · , k (4.1b)

xTPjx+ qTj x+ rj = 0, ∀j = 1, · · · , l (4.1c)

where the parameters are A0, A1, · · · , Ak, P1, · · · , Pl ∈ Sn, b0, b1, · · · , bk, q1, · · · , ql ∈ Rn, and

c0, c1, · · · , ck, r1, · · · , rl ∈ R. Here, we do not assume that matrices A0, A1, · · · , Ak, P1, · · · , Pl

are positive semi-definite.

Assumption 3. Problem (4.1a) – (4.1c) is strictly feasible and has a finite optimal solution.

Let λ = [λ1 · · · λk]T ∈ Rk+ and ν = [ν1 · · · νl]T ∈ Rl, respectively, be the Lagrange multi-

pliers associated with constraints (4.1b) and (4.1c). By Definition 5 the Lagrangian associated

with QCQP (4.1a) – (4.1c) is given by

L(x, λ, ν) = xTA0x+ bT0 x+ c0 +

k∑
i=1

λi
(
xTAix+ bTi x+ ci

)
+

l∑
j=1

νj
(
xTPjx+ qTj x+ rj

)

= xT

A0 +

k∑
i=1

λiAi +

l∑
j=1

νjPj

x+

bT0 +

k∑
i=1

λib
T
i +

l∑
j=1

νjq
T
j

x

+

c0 +

k∑
i=1

λici +

l∑
j=1

νjrj

 . (4.2)
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From the Lagrangian (4.2), we can derive the KKT conditions for QCQP (4.1a) – (4.1c).

Let (x?, λ?, ν?) be a KKT point of QCQP (4.1a) – (4.1c). Applying (2.6a) – (2.6e) we obtain

2

A0 +

k∑
i=1

λ?iAi +

l∑
j=1

ν?jPj

x? + b0 +

k∑
i=1

λ?i bi +

l∑
j=1

ν?j qj = 0 (4.3a)

x?TAix
? + bTi x

? + ci ≤ 0, ∀i = 1, · · · , k (4.3b)

x?TPjx
? + qTj x

? + rj = 0, ∀j = 1, · · · , l (4.3c)

λ?i ≥ 0, ∀i = 1, · · · , k (4.3d)

λ?i

(
x?TAix

? + bTi x
? + ci

)
= 0, ∀i = 1, · · · , k. (4.3e)

Because QCQP (4.1a) – (4.1c) may not be a convex optimization, by Theorem 2 we know that

KKT conditions (4.3a) – (4.3e) are only necessary for local optimality.

The main result of this chapter is presented below. It reveals the fact that, due to certain

structures of QCQP (4.1a) – (4.1c), the associated KKT points are equivalent to saddle-points

(and hence globally optimal) provided that an additional linear matrix inequality (LMI) holds.

Theorem 11. Suppose that the vector (x?, λ?, ν?) ∈ Rn × Rk+ × Rl is a KKT point of QCQP

(4.1a) – (4.1c). Then (x?, λ?, ν?) is also a saddle-point for the Lagrangian (4.2) if and only if

A0 +
k∑
i=1

λ?iAi +
l∑

j=1

ν?jPj � 0. (4.4)

Proof of Theorem 11. We will prove this result by applying Definition 8. In other words, we

would like to show that both inequalities in (2.8) hold for the Lagrangian (4.2).

Showing the left inequality in (2.8) is quite straight forward, because

L(x?, λ?, ν?)− L(x?, λ, ν)

=

k∑
i=1

(λ?i − λi)
(
x?TAix

? + bTi x
? + ci

)
+

l∑
j=1

(ν?j − νj)
(
x?TPjx

? + qTj x
? + rj

)

=

k∑
i=1

−λi
(
x?TAix

? + bTi x
? + ci

)
≥ 0 (4.5)

where we have applied KKT conditions (4.3c) and (4.3e) at the second step. Then, inequality

(4.5) easily follows from another KKT condition (4.3b) and λi ≥ 0, for all i = 1, · · · , k.
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Next we prove the right inequality in (2.8). We have

L(x, λ?, ν?)− L(x?, λ?, ν?)

= xT

A0 +

k∑
i=1

λ?iAi +

l∑
j=1

ν?jPj

x

− x?T
A0 +

k∑
i=1

λ?iAi +
l∑

j=1

ν?jPj

x? +

bT0 +
k∑
i=1

λ?i b
T
i +

l∑
j=1

ν?j q
T
j

 (x− x?)

=
[

(x− x?) + x?
]T A0 +

k∑
i=1

λ?iAi +
l∑

j=1

ν?jPj

[ (x− x?) + x?
]

− x?T
A0 +

k∑
i=1

λ?iAi +

l∑
j=1

ν?jPj

x? + (x− x?)T
b0 +

k∑
i=1

λ?i bi +

l∑
j=1

ν?j qj


= (x− x?)T

A0 +

k∑
i=1

λ?iAi +

l∑
j=1

ν?jPj

 (x− x?)

+ 2 (x− x?)T
A0 +

k∑
i=1

λ?iAi +

l∑
j=1

ν?jPj

x? + (x− x?)T
b0 +

k∑
i=1

λ?i bi +

l∑
j=1

ν?j qj


= (x− x?)T

A0 +

k∑
i=1

λ?iAi +

l∑
j=1

ν?jPj

 (x− x?)

+ (x− x?)T
2

A0 +
k∑
i=1

λ?iAi +
l∑

j=1

ν?jPj

x? + b0 +
k∑
i=1

λ?i bi +
l∑

j=1

ν?j qj


= (x− x?)T

A0 +
k∑
i=1

λ?iAi +
l∑

j=1

ν?jPj

 (x− x?)

≥ 0 (4.6)

where at the last step we have used KKT condition (4.3a) and LMI (4.4) to obtain inequality

(4.6). From inequality (4.6) we also notice that L(x, λ?, ν?)−L(x?, λ?, ν?) can be expressed as

a sum-of-squares (SOS) in terms of x.

It is a well-known result (Theorem 4) that any quadratic, multi-variate polynomial is non-

negative if and only if it can be written in an SOS form. Turning back to our case, because

L(x, λ?, ν?)−L(x?, λ?, ν?) is indeed a quadratic polynomial in vector x ∈ Rn, we conclude that

inequality (4.6) holds if and only if LMI (4.4) is satisfied. Now, combining both inequalities

(4.5) and (4.6) completes the proof.
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Remark 4. KKT conditions (4.3a) – (4.3e) and LMI (4.4) have together characterized the

global optimality for QCQP (4.1a) – (4.1c). If QCQP (4.1a) – (4.1c) is convex or degrades to

a linear programming (LP), then LMI (4.4) will always be satisfied. Under these circumstances,

KKT conditions (4.3a) – (4.3e) themselves become the necessary and sufficient global optimality

conditions.

4.2 Relations to the Convex Relaxations

This section briefly reviews two convex relaxation approaches that have been developed for

studying the non-convex QCQPs. These relaxations are the Lagrange dual relaxation and the

SDP relaxation, respectively. We also build relations between these relaxations and our global

optimality conditions derived in the previous section.

4.2.1 The Lagrange Dual Relaxation

Let us first discuss about the QCQP’s global optimality conditions (4.3a) – (4.3e) and (4.4)

from the Lagrange dual point of view. The Lagrange dual of QCQP (4.1a) – (4.1c) is given by

maximize
ξ, η, γ

γ (4.7a)

subject to ξ ≥ 0 (4.7b)
A0 +

k∑
i=1

ξiAi +
l∑

j=1

ηjPj
1

2

b0 +
k∑
i=1

ξibi +
l∑

j=1

ηjqj


1

2

b0 +

k∑
i=1

ξibi +

l∑
j=1

ηjqj

T

c0 +

k∑
i=1

ξici +

l∑
j=1

ηjrj − γ

 � 0 (4.7c)

whose optimum (ξ?, η?, γ?) directly satisfies conditions (4.3d) and (4.4), according to the dual

constraints (4.7b) and (4.7c). Also suppose that x? is an optimal solution to the primal QCQP

(4.1a) – (4.1c), then x? must be primal feasible. Thus, conditions (4.3b) and (4.3c) are satisfied.

One fact we should notice is that during the derivation of the Lagrange dual (4.7a) – (4.7c),

we have already applied condition (4.3a) to minimize the Lagrangian (4.2) with respect to the

primal variable x. Therefore, condition (4.3a) is satisfied at (x?, ξ?, η?), too.
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Now the only condition left is the complementary slackness (4.3e). We have already known

that if there exits a zero duality gap between QCQP (4.1a) – (4.1c) and its Lagrange dual

(4.7a) – (4.7c), then the complementary slackness (4.3d) holds, see Boyd and Vandenberghe

(2004). Conversely, if the complementary slackness (4.3d) is satisfied, by Theorems 11 and 3,

we conclude that strong duality holds between problems (4.1a) – (4.1c) and (4.7a) – (4.7c). In

other words, the complementary slackness (4.3e) becomes a necessary and sufficient condition

that characterizes strong duality between problems (4.1a) – (4.1c) and (4.7a) – (4.7c).

4.2.2 The SDP Relaxation

Alternatively, we can also formulate an SDP relaxation for the non-convex QCQP problem

(4.1a) – (4.1c). Let us introduce a new matrix variable W := xxT , then QCQP (4.1a) – (4.1c)

can be equivalently written as

minimize
x and W

Tr{A0W}+ bT0 x+ c0 (4.8a)

subject to Tr{AiW}+ bTi x+ ci ≤ 0, ∀i = 1, · · · , k (4.8b)

Tr{PjW}+ qTj x+ rj = 0, ∀j = 1, · · · , l (4.8c)

W = xxT (4.8d)

where all the objective function and constraints (4.8a) – (4.8c) are linear in x and W , while

the only non-convex constraint comes from (4.8d). Then we can replace (4.8d) with a convex

SDP constraint W − xxT � 0 and obtain

minimize
x and W

Tr{A0W}+ bT0 x+ c0 (4.9a)

subject to Tr{AiW}+ bTi x+ ci ≤ 0, ∀i = 1, · · · , k (4.9b)

Tr{PjW}+ qTj x+ rj = 0, ∀j = 1, · · · , l (4.9c)W x

xT 1

 � 0. (4.9d)

Note that the last constraint (4.9d) has equivalently expressed W − xxT � 0 using the Schur

complement. Now problem (4.9a) – (4.9d) becomes as a convex SDP, which is also called an

SDP relaxation for QCQP (4.1a) – (4.1c).
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Theorem 12. Suppose that the SDP relaxation (4.9a) – (4.9d) has an optimal solution (x?,W ?).

Then the SDP relaxation provides the same optimal cost as QCQP (4.1a) – (4.1c) if and only

if the optimum W ? is rank-one with W ? = (x?) (x?)T .

Proof of Theorem 12. Necessity (⇒): Suppose that x? is an optimal solution to the non-convex

QCQP (4.1a) – (4.1c). Then, by definition, we may construct (x?,W ?) with W ? = (x?) (x?)T

as a solution to the SDP relaxation (4.9a) – (4.9d). Since the relaxation between (4.1a) – (4.1c)

and (4.9a) – (4.9d) is tight, we know that (x?,W ?) must be optimal to (4.9a) – (4.9d).

Sufficiency (⇐): Conversely, since (x?,W ?) with W ? = (x?) (x?)T is an optimal solution

to the SDP relaxation (4.9a) – (4.9d), we know that x? must be a solution to the non-convex

QCQP (4.1a) – (4.1c), which implies that the optimal cost of (4.1a) – (4.1c) is no more than

that of (4.9a) – (4.9d). On the other hand, because (4.9a) – (4.9d) is a relaxation for problem

(4.1a) – (4.1c), the optimal cost of (4.9a) – (4.9d) is no more than that of (4.1a) – (4.1c), either.

Therefore, we conclude that the SDP relaxation (4.9a) – (4.9d) is tight.

4.2.3 Relations to the Global Optimality Conditions

Because both optimizations (4.7a) – (4.7c) and (4.9a) – (4.9d) are convex relaxations for

the non-convex QCQP (4.1a) – (4.1c), an interesting question that one would ask is: what is

the relationship between these two relaxations? Reference d’Aspremont and Boyd (2003) has

shown that the Lagrange dual relaxation (4.7a) – (4.7c) and the SDP relaxation (4.9a) – (4.9d)

are dual problems to each other. Since both relaxations are convex problems, under general

assumptions for constraint qualification (e.g., Slater’s conditions), strong duality holds between

them. In other words, both relaxations (4.7a) – (4.7c) and (4.9a) – (4.9d) provide a same lower

bound for QCQP (4.1a) – (4.1c).

We next summarize the relation between the tightness of the SDP relaxation (4.9a) – (4.9d)

and global optimality conditions (4.3a) – (4.3e) and (4.4).

Theorem 13. Suppose that Slater’s conditions hold for the SDP relaxation (4.9a) – (4.9d).

Then the SDP relaxation has a rank-one optimal solution with the same optimal cost as QCQP

(4.1a) – (4.1c) if and only if global optimality conditions (4.3a) – (4.3e) and (4.4) are satisfied.
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Proof of Theorem 13. Necessity (⇒): If the SDP relaxation (4.9a) – (4.9d) is tight, by strong

duality between relaxations (4.9a) – (4.9d) and (4.7a) – (4.7c), we conclude that there is a zero

optimal duality gap between problems (4.1a) – (4.1c) and (4.7a) – (4.7c). By Theorem 3, it

implies the existence of a saddle-point for the Lagrangian (4.2). Then Theorem 11 says that

this saddle-point must satisfy global optimality conditions (4.3a) – (4.3e) and (4.4).

Sufficiency (⇐): If global optimality conditions (4.3a) – (4.3e) and (4.4) are satisfied, by

Theorem 11 we know that there is a saddle-point for the Lagragian (4.2). Moreover, Theorem

3 tells us that strong duality must hold between QCQP (4.1a) – (4.1c) and its Lagrange dual

(4.7a) – (4.7c). Therefore, we conclude that the SDP relaxation (4.9a) – (4.9d) is tight, because

strong duality also holds between the two relaxations (4.7a) – (4.7c) and (4.9a) – (4.9d).

Remark 5. In the following sections we will show that the optimization dynamics associated

with QCQP (4.1a) – (4.1c) may exhibit an intrinsic computation structure. In contrast, both

convex relaxations (4.7a) – (4.7c) and (4.9a) – (4.9d) are not directly amenable to be solved by

distributed optimization methods.

4.3 Issues in the Application of Traditional Primal-Dual Algorithms

We note that in literature there are many discretized algorithms that are developed based on

the primal-dual optimization idea, for example, the sub-gradient optimization method by Nedić

and Ozdaglar (2009) and the alternating direction method of multipliers (ADMM) by Boyd

et al. (2011). However, those algorithms are primarily conceived for solving convex problems,

and hence are difficult or even problematic to be applied to non-convex optimizations. In this

section, we point out several technical issues that appear in the application of these algorithms

for solving non-convex QCQPs.

To simplify our presentation, we consider the following non-convex QCQP

minimize
x∈Rn

xTA0x (4.10a)

subject to xTA1x+ c1 = 0 (4.10b)

where c1 6= 0 and A0 and A1 may not be positive semi-definite matrices.
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The Lagrangian associated with QCQP (4.10a) – (4.10b) is given by

L(x, λ) := xTA0x+ λ
(
xTA1x+ c1

)
= xT

(
A0 + λA1

)
x+ λc1 (4.11)

and next we try to seek a saddle-point for the Lagrangian (4.11) via two traditional primal-dual

optimization methods, namely, the sub-gradient and the ADMM algorithms.

4.3.1 The Sub-Gradient Method

Let us first focus on the sub-gradient method proposed by Nedić and Ozdaglar (2009). In

that work the authors have studied the following convex-concave saddle-point problem

min
x∈X

max
µ∈M

L(x, µ) (4.12)

where X is a closed convex set in Rn, M is a closed convex set in Rm, and L is a convex-concave

function defined over X ×M . In particular, L(·, µ) : X → R is convex for every µ ∈ M , and

L(x, ·) : M → R is concave for every x ∈ X. This function L(x, µ), in fact, can be viewed as a

generalization of the Lagrangian associated with a convex optimization.

To solve problem (4.12), A. Nedić and A. Ozdaglar proposed a sub-gradient algorithm

xk+1 = PX [xk − αLx(xk, µk)] for k = 0, 1, 2, · · · (4.13a)

µk+1 = PM [µk + αLµ(xk, µk)] for k = 0, 1, 2, · · · (4.13b)

where Lx and Lµ denote the gradient of L with respect to x and µ, and PX and PM denote

the projections on sets X and M , respectively.

If we would like to apply the sub-gradient method (4.13a) – (4.13b) to solve the non-convex

QCQP (4.10a) – (4.10b), we will encounter some difficulties in the primal update (4.13a).

The reason is the following. We note that the feasible set X associated with the non-convex

QCQP (4.10a) – (4.10b) is X :=
{
x ∈ Rn | xTA1x + c1 = 0

}
, which is a non-convex set.

Consequently, computing the projection operation PX onto the feasible set X is generally very

hard due to the non-convexity of set X. Therefore, we conclude that applying the sub-gradient

method to solve non-convex QCQPs is problematic.
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4.3.2 The ADMM Algorithm

Now let us turn to study the ADMM algorithm. Applying the ADMM algorithm in Boyd

et al. (2011) to the Lagrangian (4.11) associated with non-convex QCQP (4.10a) – (4.10b), we

obtain the following update law

xk+1 := argmin
x

L
(
x, λk

)
= argmin

x
xT
(
A0 + λkA1

)
x (4.14a)

λk+1 := λk + ρ
[(
xk+1

)T
A1x

k+1 + c1

]
(4.14b)

where ρ is some positive scaling for the dual update. Here we would like to argue that, because

of the non-convexity of the Lagrangian (4.11) in terms of x, the primal update law (4.14a) in

the ADMM algorithm may fail due to certain critical issues.

Suppose that after the (k − 1)-th iteration, we have already obtained a pair of primal and

dual variables
(
xk, λk

)
, and we next want to figure out the values of

(
xk+1, λk+1

)
. Due to the

non-positive semi-definiteness of matrices A0 and A1, the matrix
(
A0 + λkA1

)
can be either

positive semi-definite or not positive semi-definite.

If
(
A0 + λkA1

)
is not positive semi-definite, there must exist a normalized eigenvector v

such that
(
A0 + λkA1

)
v = −αv with −α < 0 being the corresponding negative eigenvalue of(

A0 + λkA1

)
. In this case, we choose x = tv with t > 0 and hence xT

(
A0 + λkA1

)
x = −αt2.

To minimize xT
(
A0 + λkA1

)
x we let t→∞, and therefore xT

(
A0 + λkA1

)
x = −αt2 → −∞.

Under this circumstance, the ADMM algorithm fails because xk+1 = tv →∞.

If
(
A0 + λkA1

)
is positive semi-definite, then x = 0 is always a minimizer for the quadratic

term xT
(
A0 + λkA1

)
x. Suppose we choose xk+1 = 0, then by the dual update law (4.14b) we

have λk+1 = λk + ρc1. Although it seems that we have finished the update for
(
xk+1, λk+1

)
, in

fact we have fallen into another trap. On the one hand, if in the subsequent iterations the dual

variable λk+1, λk+2, · · · maintains the positive semi-definiteness of matrix (A0 + λA1), then the

primal variable xk+1, xk+2, · · · will remain at the origin. As a result, after n iterations with n

large enough, the dual variable λk+n = λk + nρc1 will become unbounded. On the other hand,

if at some l-th step we have
(
A0 + λk+lA1

)
� 0, then by our previous argument, the ADMM

algorithm will fail again since the primal variable becomes unbounded.
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4.4 The Associated Optimization Dynamics

After pointing out the technical issues related to the application of traditional primal-dual

optimization algorithms, in this section we apply the continuous-time optimization dynamics to

solve non-convex QCQPs. We show that our continuous-time optimization dynamics approach

is more easily applicable than the existing sub-gradient and ADMM algorithms. Moreover, our

optimization dynamics approach guarantees a local convergence to the saddle-points associated

with non-convex QCQPs provided they exist.

From definitions (3.1a) – (3.1c), the optimization dynamical system associated with problem

(4.1a) – (4.1c) can be formulated as

ẋ = −2

A0 +
k∑
i=1

λiAi +
l∑

j=1

νjPj

x− b0 −
k∑
i=1

λibi −
l∑

j=1

νjqj (4.15a)

λ̇i =
[
xTAix+ bTi x+ ci

]+

λi
∀i = 1, · · · , k (4.15b)

ν̇j = xTPjx+ qTj x+ rj ∀j = 1, · · · , l. (4.15c)

4.4.1 Convergence Analysis

We notice that any equilibrium to optimization dynamics (4.15a) – (4.15c) satisfies KKT

conditions (4.3a) – (4.3e). By Theorem 11, we know that if the LMI condition (4.4) is satisfied

then this equilibrium must be a saddle-point for the Lagrangian (4.2), and vise versa.

Luckily, the matrix that appears in (4.4) is indeed the Hessian of the Lagrangian (4.2) with

respect to the primal variable and evaluated at the given equilibrium. It turns out that we can

apply Theorem 10 here to describe the saddle-point’s locally asymptotic stability with respect

to optimization dynamics (4.15a) – (4.15c).

Theorem 14. Suppose that QCQP (4.1a) – (4.1c) has a strictly complementary KKT point

(x?, λ?, ν?). Also suppose that x? is regular. If A0 +
∑k

i=1 λ
?
iAi +

∑l
j=1 ν

?
jPj � 0, then there is

a small neighborhood around (x?, λ?, ν?) such that

• Optimization dynamics (4.15a) – (4.15c) has a unique solution within this neighborhood;

• Any trajectory starting inside this neighborhood converges to (x?, λ?, ν?) asymptotically.



www.manaraa.com

43

Proof of Theorem 14. This is a direct result derived from Theorem 10.

Compared with Theorem 11, the convergence analysis given in Theorem 14 is conservative.

We require the LMI condition (4.4) to be positive definite, not positive semi-definite. Moreover,

we need to assume both regularity and strict complementarity. All of these conditions ensure

that the saddle-point under study is an isolated point. Specifically, the positive definiteness of

the Hessian of the Lagrangian guarantees the local uniqueness of the primal optimum, while

regularity and strict complementarity guarantee the local uniqueness of the dual optimum.

We will leave the extension of positive semi-definite cases to future research. Here let us

just consider an extreme case. If we have A0 = A1 = · · · = Ak = P1 = · · · = Pl = 0, then the

non-convex QCQP (4.1a) – (4.1c) degrades to an LP. In this case, the LMI condition (4.4) is

still satisfied because it is always zero. However, we know from Arrow and Hurwicz (1958) that

the optimization dynamics associated with an LP may oscillate and hence does not converge

to any equilibrium. One direction we can explore to handle these cases is to add appropriate

quadratic augmentation terms in the Lagrangian. It has been shown in Wang and Elia (2016)

that this approach works for convex problems.

Corollary 1. Suppose that dynamics (4.15a) – (4.15c) converges to an equilibrium (x?, λ?, ν?).

Then (x?, λ?, ν?) is a saddle-point for the Lagrangian (4.2) if it satisfies LMI condition (4.4).

Proof of Corollary 1. This is a direct result by applying Theorem 11.

Another point we need to point out is that, for certain networked non-convex QCQPs, their

coefficient matrices A0, A1, · · · , Ak, P1, · · · , Pl can be viewed as parts of the weighted Laplacian

matrix, and hence they reflect some topological information about network’s connection. Under

these circumstances, the associated optimization dynamics (4.15a) – (4.15c) will exhibit a nice,

distributed computation structure. In the Section 4.5, we will present a two-way partitioning

example to illustrate this property.

4.4.2 Global Convergence Analysis for Equality-Constrained QCQPs

In the previous subsection, we have proved a local convergence result for the optimization

dynamics associated with non-convex QCQPs. A natural question that one would ask is: Can
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we talk about the behavior of dynamics (4.15a) – (4.15c) in a global sense? Generally speaking,

it is difficult to develop a global convergence analysis for the optimization dynamical system

(4.15a) – (4.15c), due to the non-linearity and positive projections. Nevertheless, we can present

more discussions about the optimization dynamics if the original QCQP problem only contains

quadratic equality constraints.

Let us consider an equality constrained non-convex QCQP

minimize
x∈Rn

xTA0x+ bT0 x+ c0 (4.16a)

subject to xTAix+ bTi x+ ci = 0, ∀i = 1, · · · ,m (4.16b)

where A0, A1, · · · , Am ∈ Sn, b0, b1, · · · , bm ∈ Rn, and c0, c1, · · · , cm ∈ R, with m ≤ n. Same as

before, we assume that QCQP (4.16a) – (4.16b) is feasible and has a finite optimal solution.

Due to the non-convexity of QCQP (4.16a) – (4.16b), it may have multiple local minimizers.

Let λ ∈ Rm be the Lagrange multiplier associated with constraint (4.16b). Following from

definitions (3.1a) – (3.1c), the optimization dynamics associated with (4.16a) – (4.16b) is

ẋ = −2

(
A0 +

m∑
i=1

λiAi

)
x−

(
b0 +

m∑
i=1

λibi

)
(4.17a)

λ̇i = xTAix+ bTi x+ ci, ∀i = 1, · · · ,m (4.17b)

where we do not need positive projections since the problem is only equality constrained.

Because of the possible existence of multiple KKT points of QCQP (4.16a) – (4.16b), we

know that the associated optimization dynamics (4.17a) – (4.17b) may have multiple equilibria.

In fact, the equilibrium points of (4.17a) – (4.17b) can be divided into two disjoint sets

Q1 :=

{
(x?, λ?) is KKT

∣∣∣ A0 +

m∑
i=1

λ?iAi � 0

}

Q2 :=

{
(x̄, λ̄) is KKT

∣∣∣ A0 +

m∑
i=1

λ̄iAi � 0

}
.

According to Theorem 11, Q1 contains all the saddle-points, whereas Q2 contains other KKT

points that are not saddle-points. Of course, we would like the optimization dynamical system

converges to Q1 but diverges from Q2. To achieve this goal, we may modify the optimization
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dynamics (4.17a) – (4.17b) as

ż = −2α2

(
A0 +

m∑
i=1

ξiAi

)
z − α

(
b0 +

m∑
i=1

ξibi

)
(4.18a)

ξ̇i = α2zTAiz + αbTi z + ci, ∀i = 1, · · · ,m (4.18b)

where α > 0 is some constant parameter that scales the primal variable x. It is easy to check

that if (x̄, λ̄) is an equilibrium of dynamics (4.17a) – (4.17b), then (x̄/α, λ̄) is an equilibrium

of dynamics (4.18a) – (4.18b), and vice versa.

Now we can analyze the stability of dynamics (4.18a) – (4.18b) by studying its linearized

systems. We define B(z) =
[
A1z · · · Amz

]
∈ Rn×m and C =

[
1
2b1 · · ·

1
2bm

]
∈ Rn×m, then the

Jacobian matrix associated with dynamics (4.18a) – (4.18b) is given by

J(z, ξ) = 2

−α
2

(
A0 +

m∑
i=1

ξiAi

)
−α2B(z)− αC

α2B(z)T + αCT 0

 ∈ R(n+m)×(n+m). (4.19)

Then based on the Jacobian (4.19) we can derive the following convergence analysis results.

Theorem 15. Suppose that QCQP (4.16a) – (4.16b) has a KKT point (x?, λ?) that belongs to

set Q1. If x? is regular and λ? satisfies A0 +
∑m

i=1 λ
?
iAi � 0, then the equilibrium (x?/α, λ?) is

locally asymptotically stable with respect to dynamics (4.18a) – (4.18b) for any α > 0.

Proof of Theorem 15. By a same argument of Lemma 1 in Chapter 3, we can prove that under

the conditions above, the Jacobian (4.19) evaluated at equilibrium (x?/α, λ?) is Hurwitz for any

positive constant α. Therefore, according to the stability of the linearized system, we conclude

that dynamics (4.18a) – (4.18b) is locally asymptotically stable at (x?/α, λ?).

Before analyzing the stability for those KKT points in Q2, we introduce an analytical result

on matrix perturbations.

Theorem 16. [Stewart and Sun (1990)] Let A be an n× n Hermitian matrix with real eigen-

values ordered as µ1 ≥ · · · ≥ µn. Let Ã = A+E be a non-Hermitian perturbation of matrix A.

The eigenvalues of Ã are denoted as µ̃1, · · · , µ̃n with Re{µ̃1} ≥ · · · ≥ Re{µ̃n}. Then we have

n∑
i=1

|µi − µ̃i|2 ≤ 2‖E‖2F (4.20)

where ‖ · ‖F denotes the Frobenius norm of a matrix.
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Theorem 17. Suppose that QCQP (4.16a) – (4.16b) has a KKT point (x̄, λ̄) that belongs to

set Q2. Then there always exists some α0 such that for any α > α0, the equilibrium (x̄/α, λ̄)

is unstable with respect to dynamics (4.18a) – (4.18b).

Proof of Theorem 17. Note the Jacobian (4.19) evaluated at equilibrium (x̄/α, λ̄) is given by

J̃ := 2α2

−A0 −
m∑
i=1

λ̄iAi −B(x̄)+C
α

B(x̄)T +CT

α 0

 = 2α2(J + E)

where we define

J :=

−A0 −
m∑
i=1

λ̄iAi 0

0 0

 and E :=

 0 −B(x̄)+C
α

B(x̄)T +CT

α 0

 .
Because the KKT point (x̄, λ̄) ∈ Q2, by definition we know that A0 +

∑m
i=1 λ̄iAi � 0. Suppose

the eigenvalues of J are denoted as µ1 ≥ · · · ≥ µn+m = 0, then we must have µ1 > 0. Also

suppose that the eigenvalues of the Jacobian J̃ can be ordered as Re{µ̃1} ≥ · · · ≥ Re{µ̃n+m}.

Thus, according to Theorem 16, we can choose a constant α

α > α0 :=

√
4

µ2
1

Tr
{[
B(x̄) + C

][
B(x̄) + C

]T}
such that the following inequality holds

n+m∑
i=1

|µi − µ̃i|2 ≤ 2‖E‖2F =
4

α2
Tr
{[
B(x̄) + C

][
B(x̄) + C

]T}
< µ2

1

which further implies |µ1 − µ̃1| < µ1 ⇒ Re{µ̃1} > 0. Then the instability result follows.

Corollary 2. Suppose that optimization dynamics (4.18a) – (4.18b) has an α large enough.

If it can converge to an equilibrium (x?/α, λ?) as time goes to infinity, then (x?, λ?) must be a

saddle-point for the Lagrangian associated with QCQP (4.16a) – (4.16b).

Proof of Corollary 2. Because we have assumed that α is large enough, by Theorem 17 we

know that none of the KKT points in Q2 is stable with respect to dynamics (4.18a) – (4.18b).

Consequently, this equilibrium must belong to Q1. This completes the proof.
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4.5 Partitioning and MAXCUT Problems

This section gives a MAXCUT example, which is casted as a networked non-convex QCQP,

to demonstrate the distributed structure of our optimization dynamics approach.

4.5.1 The Two-Way Partitioning Problem

Consider the two-way partitioning problem formulated by Boyd and Vandenberghe (2004)

minimize
x∈Rn

xTWx (4.21a)

subject to x2
i = 1, ∀i = 1, 2, · · · , n (4.21b)

where W ∈ Sn. The constraints restrict the values of xi to 1 or −1, so the problem is equivalent

to finding the vector with components ±1 that minimizes xTWx.

The feasible set here is finite (it contains 2n points), so this problem can in principle be

solved by simply checking the objective value of each feasible point. Since the number of feasible

points grows exponentially, however, this is possible only for small problems. In general, the

two-way partitioning problem (4.21a) – (4.21b) is very difficult to solve.

A feasible x to the two-way partitioning problem corresponds to the partition

{1, · · · , n} = {i | xi = −1} ∪ {i | xi = 1}

and the matrix coefficient W (i, j) can be interpreted as the cost of having the elements i and

j in the same partition, and −W (i, j) is the cost of having i and j in different partitions. The

objective in (4.21a) is the total cost, over all pairs of elements, and problem (4.21a) – (4.21b)

seeks to find a partition with the least total cost.

4.5.2 The MAXCUT Problem

A MAXCUT problem can be formulated as a particular two-way partitioning problem that

is defined over a network. On a given graph G that consists of n nodes, we assign a non-negative

weight wij with each edge (i, j), where wij = 0 if there is no edge that connects node i and

node j. Then the MAXCUT problem seeks to find a cut of the graph with the largest possible
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weight, i.e., a partition of the set of nodes in two parts G1 and G2 such that the total weight

of all edges linking these parts is maximized. The MAXCUT problem is a classic problem in

networked optimization.

The weight of a particular cut xi is computed as

1

2

∑
{i |xixj=−1}

wij

which is also equal to

1

4

n∑
i, j=1

wij(1− xixj).

Hence, we would like to define W ∈ Sn as W (i, j) := −wij if i 6= j and W (i, i) :=
∑

j 6=iwij .

Note that the W matrix here is exactly the weighted Laplacian defined in Definition 3, and,

therefore, we have W � 0.

Utilizing the W matrix, we can formulate the MAXCUT problem as

minimize
x∈Rn

− xTWx (4.22a)

subject to x2
i = 1, ∀i = 1, 2, · · · , n (4.22b)

where we have changed the objective from maximizing xTWx into minimizing −xTWx. Thus,

we can see that the MAXCUT problem is a special case of the two-way partitioning problem.

Moreover, both its objective (4.22a) and constraint (4.22b) are non-convex.

4.5.3 A MAXCUT Example

We now use a MAXCUT example to illustrate the distributedness and effectiveness of our

continuous-time optimization dynamics approach.

Example 2. Consider the five-node graph in Fig. 4.1. Its weighted Laplacian is given by

W =



1.6 −0.4 −1 0 −0.2

−0.4 2.2 0 −0.6 −1.2

−1 0 2.2 −0.8 −0.4

0 −0.6 −0.8 1.8 −0.4

−0.2 −1.2 −0.4 −0.4 2.2


.
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In order to ensure that the MAXCUT problem has an isolated saddle-point, we select node

1 as the reference node, i.e., we require that the optimal value of x1 should be 1. To achieve

this goal, we add an extra cost (x1 − 1)2 to (4.22a) and form an equivalent problem

minimize
x∈Rn

− xTWx+ (x1 − 1)2 (4.23a)

subject to x2
i = 1, ∀i = 1, 2, · · · , 5. (4.23b)

Let νi, for i = 1, · · · , 5, be the Lagrange multipliers associated with constraint x2
i = 1. Let

us also assign both primal and dual variables (xi and νi) to each node i.

We say that an optimization algorithm is distributed if, during the optimization process,

each node only shares its individual variables with its directly connected neighbors.

Applying optimization dynamics (4.15a) – (4.15c) to problem (4.23a) – (4.23b), we obtain

the following dynamical system

ẋ1 = 2(0.6− ν1)x1 − 0.8x2 − 2x3 − 0.4x5 + 2 (4.24a)

ẋ2 = 2(2.2− ν2)x2 − 0.8x1 − 1.2x4 − 2.4x5 (4.24b)

ẋ3 = 2(2.2− ν3)x3 − 2x1 − 1.6x4 − 0.8x5 (4.24c)

ẋ4 = 2(1.8− ν4)x4 − 1.2x2 − 1.6x3 − 0.8x5 (4.24d)

ẋ5 = 2(2.2− ν5)x5 − 0.4x1 − 2.4x2 − 0.8x3 − 0.8x4 (4.24e)

ν̇i = x2
i , ∀i = 1, · · · , 5. (4.24f)

We can see from dynamics (4.24f) that each Lagrange multiplier νi only uses the local primal

variable xi to update itself. As for the primal dynamics (4.24a) – (4.24e), it is clear that node

i requires xi, νi, and xj , for all node j which is directly connected with node i, to compute ẋi.

Let us take node 1 as an example to illustrate this. Since node 1 is not directly connected with

node 4, in dynamics (4.24a) all x1, ν1, x2, x3, and x5 are involved except x4. Therefore, we

conclude that dynamical system (4.24a) – (4.24f) has a distributed structure.

When we feed dynamics (4.24a) – (4.24f) with a random initial point with `∞ norm less

than 1, the dynamical system evolves and converges to a KKT point x? = (1,−1,−1, 1, 1) and

ν? = (2.8, 4.4, 4.4, 2.8, 3.2) in less than 50 simulation seconds. Trajectories of the primal and

dual variables are, respectively, plotted above in Fig. 4.2.
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Figure 4.1 A five-node weighted graph
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Figure 4.2 Convergence of the five-node MAXCUT example

We next substitute this KKT point (x?, ν?) back to check the LMI condition (4.4), we find

the eigenvalues of (4.4) are given by 0.1037, 0.4230, 1.6096, 2.6273, and 3.8452. Thus, Theorem

11 is satisfied and we can guarantee that (x?, ν?) is exactly a saddle-point. The primal optimum

we have obtained partitions these five nodes into two groups G1 = {1, 4, 5} and G2 = {2, 3}

with the largest total weight (x?)T Wx?/4 = 4.4.

Remark 6. We should point out that the LMI condition (4.4) cannot be checked in a distributed

manner. Nevertheless, we notice that the MAXCUT problem (4.22a) – (4.22b) has exactly the

same form as QCQP (4.16a) – (4.16b), so we can apply the modified optimization dynamics

(4.18a) – (4.18b) to seek saddle-points associated with the MAXCUT problem. With a constant

α large enough, we can guarantee that whenever the optimization dynamics converges, it must

converge to a saddle-point. As a result, we practically may avoid checking LMI (4.4).
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4.6 Phase Recovery Problems

The phase recovery problem, namely, the problem of reconstructing a complex phase vector

given only the magnitude of linear measurements, appears in a wide range of engineering and

physical applications, including audio signal estimation Griffin and Lim (1984), crystallography

imaging Harrison (1993) and Miao et al. (2008), and diffraction imaging Bunk et al. (2007).

4.6.1 Problem Formulation

The phase recovery problem seeks to retrieve a signal x ∈ Cn from the amplitude |Ax| = b

of m linear measurements, where A ∈ Cm×n and b ∈ Rm. Here, we usually assume that m > n.

Thus, the phase recovery problem can be cast as a complex-valued non-convex QCQP

minimize
x∈Cn

x∗x (4.25a)

subject to x∗Akx = b2k, ∀k = 1, · · · ,m (4.25b)

where x∗ denotes the conjugate transpose of vector x and matrix Ak ∈ Cn×n is defined as

Ak := A(k, :)∗A(k, :). Observing that the phase recovery problem (4.25a) – (4.25b) is in general

NP hard, Candès et al. (2011) has relaxed it as a trace minimization problem over an affine

slice of the positive semi-definite cone

minimize
X∈Cn×n

Tr{X} (4.26a)

subject to Tr{AkX} = b2k, ∀k = 1, · · · ,m (4.26b)

X � 0. (4.26c)

If the optimal solution of (4.26a) – (4.26c) has rank one, then we can recover the signal x from

factorizing the optimal solution as X = xx∗.

This methodology which lifts up the problem of vector recovery from quadratic constraints

into that of recovering a rank-one matrix from affine constraints via semi-definite programming

is known under the name of phase lift, and, of course, problem (4.26a) – (4.26c) is the SDP

relaxation for the non-convex QCQP (4.25a) – (4.25b).

It has been shown that the SDP relaxation (4.26a) – (4.26c) recovers the signal x exactly

with high probability if the number m of magnitude measurements is on the order of n log n.
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Theorem 18. [Candès et al. (2011)] Consider an arbitrary signal x in Rn or Cn and suppose

that the number of measurements obeys m ≥ c0n log n, where c0 is a sufficiently large constant.

Then in both the real and complex cases, the solution to the trace minimization program is exact

with high probability in the sense that (4.26a) – (4.26c) has a unique solution obeying X = xx∗.

This holds with probability at least 1− 3e−γ
m
n , where γ is a positive absolute constant.

Theorem 18 establishes a rigorous equivalence between a class of phase recovery problems

and a class of convex SDP relaxations. In other words, under the oversampling assumption,

strong duality holds for the non-convex QCQP (4.25a) – (4.25b) with high probability. There-

fore, our optimization dynamics approach can be applied to the phase recovery problem.

We note that the phase recovery problem (4.25a) – (4.25b) is complex-valued optimization.

To apply the optimization dynamics approach, we should reformulate it as an optimization

over real numbers. To achieve this, we define

u :=
[

Re{x1} · · · Re{xn} Im{x1} · · · Im{xn}
]T ∈ R2n

Ak :=

Re{Ak} −Im{Ak}

Im{Ak} Re{Ak}

 ∈ R2n×2n.

Now for each index k = 1, · · · ,m, the equality uTAku = x∗Akx = b2k holds. Therefore, the

phase recovery problem (4.25a) – (4.25b) can be recast as a real-valued non-convex QCQP

minimize
u∈R2n

uTu (4.27a)

subject to uTAku = b2k, ∀k = 1, · · · ,m. (4.27b)

Then our optimization dynamics approach can be utilized to solve problem (4.27a) – (4.27b).

4.6.2 The Augmented Lagrangian and Associated Optimization Dynamics

Next we would like to apply our optimization dynamics approach to solve the real-valued

phase recovery problem (4.27a) – (4.27b). First of all, the Lagrangian associated with problem

(4.27a) – (4.27b) is given by

L(u, λ) := uTu+

m∑
k=1

λk
(
uTAku− b2k

)
. (4.28)
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To achieve a better convergence to the saddle-point, however, here we are going to derive our

optimization dynamics from the augmented Lagrangian

L̃(u, λ) := uTu+
ρ

2

m∑
k=1

(
uTAku− b2k

)2
+

m∑
k=1

λk
(
uTAku− b2k

)
. (4.29)

We call the polynomial (4.29) above as the “augmented Lagrangian” since it has an quartic

augmented term ρ
2

∑m
k=1

(
uTAku− b2k

)2
with parameter ρ > 0 when compared to the standard

Lagrangian (4.28). This augmented term comes from the equality constraint (4.27b) and can

be viewed as a penalty cost that is added to the objective function (4.27a). By adding such

a quartic penalty cost to the phase recovery problem (4.27a) – (4.27b), it should improve the

convergence of our optimization dynamics.

Now we define our optimization dynamics associated with phase recovery (4.27a) – (4.27b)

based on the augmented Lagrangian (4.29)

u̇ := −∂L̃(u, λ)

∂u
= −2

{
I2n +

m∑
k=1

[
λk + ρ

(
uTAku− b2k

)]
Ak

}
u (4.30a)

λ̇k :=
∂L̃(u, λ)

∂λk
= uTAku− b2k, ∀k = 1, · · · ,m. (4.30b)

Substituting dynamics (4.30b) into (4.30a), we can rewrite dynamics (4.30a) as

u̇ = −2

[
I2n +

m∑
k=1

(
λk + ρλ̇k

)
Ak

]
u (4.31)

where the derivative term of the dual variable λ̇ in dynamics (4.31) comes exactly from the

augmented term ρ
2

∑m
k=1

(
uTAku− b2k

)2
.

Before we utilize optimization dynamics (4.30a) – (4.30b) to search saddle-points for the

phase recovery problem (4.27a) – (4.27b), one may ask whether the augmented term changes

the locations of saddle-points from the standard Lagrangian. The answer is no. The standard

and augmented Lagrangians share the same saddle-points.

Theorem 19. Suppose that (u?, λ?) is a KKT point of the phase recovery (4.27a) – (4.27b).

Then (u?, λ?) is an equilibrium of dynamics (4.30a) – (4.30b) and a saddle-point for the aug-

mented Lagrangian (4.29), provided it is a saddle-point for the Lagrangian (4.28). The converse

is also true. If (u?, λ?) is an equilibrium of dynamics (4.30a) – (4.30b) and a saddle-point for

the augmented Lagrangian (4.29), then it is a saddle-point for the Lagrangian (4.28).
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Proof of Theorem 19. Let us first suppose that (u?, λ?) is a KKT point of the phase recovery

problem (4.27a) – (4.27b) and is also a saddle-point for the Lagrangian (4.28). Then from

the KKT conditions (I2n +
∑m

k=1 λ
?
kAk)u

? = 0 and (u?)T Aku
? − b2k = 0, for k = 1, · · · ,m, it

is easy to check that (u?, λ?) is an equilibrium of dynamics (4.30a) – (4.30b). Moreover, by

the definition of saddle-points, we have L(u?, λ) ≤ L(u?, λ?) ≤ L(u, λ?), so we can substitute

(u?, λ?) into the augmented Lagrangian (4.29) and check whether it satisfies the saddle-point’s

definition. On the one hand, we have L̃(u?, λ?) − L̃(u?, λ) = (u?)T u? − (u?)T u? = 0, because

(u?)T Aku
? − b2k = 0 for all k = 1, · · · ,m. On the other hand, by applying the same KKT

condition we obtain

L̃(u, λ?)− L̃(u?, λ?) = L(u, λ?)− L(u?, λ?) +
ρ

2

m∑
k=1

(
uTAku− b2k

)2 ≥ 0.

Therefore, (u?, λ?) is a saddle-point for the augmented Lagrangian (4.29).

Next let us suppose that (u?, λ?) is an equilibrium of dynamics (4.30a) – (4.30b). Hence

(u?, λ?) satisfies (u?)T Aku
?−b2k = 0 for all k = 1, · · · ,m, and, as a result, substituting (u?, λ?)

into the Lagrangian (4.28) yields L(u?, λ?)− L(u?, λ) = (u?)T u? − (u?)T u? = 0. On the other

hand, since (u?, λ?) is a saddle-point for the augmented Lagrangian (4.29), we know that u?

globally minimizes the objective function uTu + ρ
2

∑m
k=1

(
uTAku− b2k

)2
subject to constraint

(4.27b). Noticing that the extra penalty cost ρ
2

∑m
k=1

(
uTAku− b2k

)2
achieves zero at u?, we

conclude that u? is indeed a global solution to the phase recovery problem (4.27a) – (4.27b). In

other words, we must have L(u, λ?)−L(u?, λ?) ≥ 0. Then by definition (u?, λ?) is a saddle-point

for the Lagrangian (4.28). This completes the proof.

4.6.3 Simulations

Now we are ready to present our simulation results showing the effectiveness of optimization

dynamics (4.30a) – (4.30b). We implement optimization dynamics (4.30a) – (4.30b) via the

MATLAB Simulink and the block diagram of dynamics (4.30a) – (4.30b) is shown in Fig. 4.3.

The red, dashed box in Fig. 4.3 consists of a summation between the state of the dual variable

(output from the integrator) and a proportional term of the dual derivative, and therefore it

can be viewed as a PI controller. In simulations we choose the proportional coefficient ρ = 10.
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Figure 4.3 A block diagram of the optimization dynamics associated with phase recovery

We next apply our optimization dynamics algorithm to solve phase recovery problems with

n = 256 and m = 2048. The coefficient matrix A is chosen as a random Gaussian matrix with

an appropriate size. Optimization dynamics (4.30a) – (4.30b) is simulated by the MATLAB

Simulink toolbox (shown in Fig. 4.3) as if it were truly implemented via physical computing.

We first run the simulation without the proportional controller of the dual derivative and

we find that the primal dynamics will converge to zero, which is not our desired solution.

Then, in comparison, we enable the proportional controller of the dual derivative and this

time our optimization dynamics converges to a phase recovery solution with the relative error

about 10−6 within 0.001 seconds (in actual time).

The simulations above demonstrate those good effects caused by the PI controller of the

dual derivative. Introduced by the augmented Lagrangian (4.29), the additional proportional

controller of the dual derivative stabilizes our optimization dynamics (4.30a) – (4.30b) and

forces the primal dynamics converge to the correct phase recovery solution. Moreover, we can

see that our PI controller of the dual derivative results in a fast convergence with respect to

optimization dynamics (4.30a) – (4.30b).
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Figure 4.4 Convergence of a phase recovery example with n = 256 and m = 2048

Remark 7. In Section 6, we will utilize our optimization dynamics approach to solve phase

recovery problems with larger problem sizes. We will also compare our approach with existing

phase recovery algorithms, e.g., Netrapalli et al. (2015), showing that our optimization dynamics

is even faster when implemented in a discrete-time manner.

4.7 The Convex SOCPs

We discover that the convex second-order cone programmings (SOCPs) can be equivalently

written as general QCQPs. In this section, we show that under mild conditions those equivalent

QCQPs have zero optimal duality gaps with their associated Lagrange duals. Hence, we can

apply our approach here and we also find that our dynamics exhibits a distributed structure.

4.7.1 Problem Formulation

A convex SOCP can be generally formulated as

minimize
x∈Rn

fTx (4.32a)

subject to ‖Aix+ bi‖2 ≤ cTi x+ di, ∀i = 1, · · · ,m (4.32b)

Fx = g (4.32c)

where Ai ∈ Rni×n, bi ∈ Rni , ci ∈ Rn, di ∈ R, for i = 1, · · · ,m, F ∈ Rp×n, f ∈ Rn, and g ∈ Rp.
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We note that most convex optimization softwares treat an SOCP as a special SDP. For

example, Boyd and Vandenberghe (2004) equivalently transforms SOCP constraint (4.32b)

into the following SDP constraint via Schur complement

minimize
x∈Rn

fTx (4.33a)

subject to

(cTi x+ di)I Aix+ bi

(Aix+ bi)
T cTi x+ di

 � 0, ∀i = 1, · · · ,m (4.33b)

Fx = g (4.33c)

and formulation (4.33a) – (4.33c) is not amenable to be solved in a distributed manner.

Next we show that a convex SOCP can be equivalently rewritten as a non-convex QCQP.

By squaring both sides of constraint (4.32b) and requiring cTi x + di ≥ 0 for i = 1, · · · ,m, the

SOCP (4.32a) – (4.32c) can be equivalently transformed into

minimize
x∈Rn

fTx (4.34a)

subject to ‖Aix+ bi‖22 ≤ (cTi x+ di)
2, ∀i = 1, · · · ,m (4.34b)

− cTi x− di ≤ 0, ∀i = 1, · · · ,m (4.34c)

Fx = g. (4.34d)

Define Pi := ATi Ai− cicTi , qi := ATi bi−dici, and ri := bTi bi−d2
i , then problem (4.34a) – (4.34d)

can be further simplified as a non-convex QCQP, since Pi may not be positive semi-definite

minimize
x∈Rn

fTx (4.35a)

subject to xTPix+ 2qTi x+ ri ≤ 0, ∀i = 1, · · · ,m (4.35b)

− cTi x− di ≤ 0, ∀i = 1, · · · ,m (4.35c)

Fx = g. (4.35d)

We notice that QCQP (4.35a) – (4.35d) is equivalent to the original SOCP (4.32a) – (4.32c).

Because (4.32a) – (4.32c) is convex, under mild constraint qualification assumptions, there is

a zero optimal duality gap between (4.32a) – (4.32c) and its Lagrange dual relaxation. This

further implies that strong duality holds for problem (4.35a) – (4.35d).
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4.7.2 Strong Duality

Let x? be an optimal solution to the SOCP (4.32a) – (4.32c) and λ?1, · · · , λ?m, ν? be the

optimal Lagrange multipliers that are associated with constraints (4.32b) and (4.32c).

Due to the equivalent transformation between (4.32a) – (4.32c) and (4.35b) – (4.35d), we

know that x? is also an optimal solution to problem (4.35b) – (4.35d). Now we let ξ?1 , · · · , ξ?m,

η?1, · · · , η?m, and µ? be the optimal Lagrange multipliers that are associated with constraints

(4.35b) – (4.35d). We have the following result to characterize the relationship between these

points (x?, λ?, ν?) and (x?, ξ?, η?, µ?).

Theorem 20. Suppose that (x?, λ?, ν?) is a saddle-point for the Lagrangian associated with

SOCP (4.32a) – (4.32c). Also suppose that x? satisfies Aix
? + bi 6= 0 for all i = 1, · · · ,m.

Then there exists (x?, ξ?, η?, µ?) with

ξ?i := λ?i /2‖Aix? + bi‖2, η? := 0, and µ? := ν?

being a saddle-point for the Lagrangian associated with problem (4.35a) – (4.35d).

Proof of Theorem 20. Since (x?, λ?, ν?) is a saddle-point, it satisfies KKT conditions

f +
m∑
i=1

λ?i

[
ATi (Aix

? + bi)

‖Aix? + bi‖2
− ci

]
+ F T ν? = 0 (4.36a)

‖Aix? + bi‖2 − cTi x? − di ≤ 0, ∀i = 1, · · · ,m (4.36b)

Fx? = g (4.36c)

λ?i ≥ 0, ∀i = 1, · · · ,m (4.36d)

λ?i
(
‖Aix? + bi‖2 − cTi x? − di

)
= 0, ∀i = 1, · · · ,m (4.36e)

where we assume Aix
? + bi 6= 0 for all i = 1, · · · ,m to guarantee that KKT condition (4.36a)

is not meaningless.

Moreover, the Lagrangian associated with problem (4.35a) – (4.35d) is given by

L(x, ξ, η, µ) := fTx+

m∑
i=1

ξi
[
(Aix+ bi)

T (Aix+ bi)− (cTi x+ di)
2
]

−
m∑
i=1

ηi(c
T
i x+ di) + µT (Fx− g) (4.37)
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and hence a KKT point of problem (4.35a) – (4.35d) should satisfy the following conditions

f +
m∑
i=1

2ξ?i
[
ATi (Aix

? + bi)− (cTi x
? + di)ci

]
−

m∑
i=1

η?i ci + F Tµ? = 0 (4.38a)

(Aix
? + bi)

T (Aix
? + bi)− (cTi x

? + di)
2 ≤ 0, ∀i = 1, · · · ,m (4.38b)

cTi x
? + di ≥ 0, ∀i = 1, · · · ,m (4.38c)

Fx? = g (4.38d)

ξ?i ≥ 0, ∀i = 1, · · · ,m (4.38e)

η?i ≥ 0, ∀i = 1, · · · ,m (4.38f)

ξ?i
[
(Aix

? + bi)
T (Aix

? + bi)− (cTi x
? + di)

2
]

= 0, ∀i = 1, · · · ,m (4.38g)

η?i (c
T
i x

? + di) = 0, ∀i = 1, · · · ,m. (4.38h)

According to conditions (4.36b) – (4.36e) and by our definition ξ?i = λ?i /2‖Aix? + bi‖2, η? = 0,

and µ? = ν?, it is not difficult to check that KKT conditions (4.38b) – (4.38h) are satisfied.

Here we need to point out that, due to our previous assumption A?ix + bi 6= 0, we must have

cTi x
? + di ≥ ‖Aix? + bi‖2 > 0, for all i = 1, · · · ,m. This is the reason why we require η? = 0.

Next we show that condition (4.38a) is also satisfied. Substituting ξ?i = λ?i /2‖Aix? + bi‖2,

η? = 0, and µ? = ν? into the left-hand-side of (4.38a) we obtain

f +
m∑
i=1

2ξ?i
[
ATi (Aix

? + bi)− (cTi x
? + di)ci

]
−

m∑
i=1

η?i ci + F Tµ?

= f +
m∑
i=1

λ?i

[
ATi (Aix

? + bi)

‖Aix? + bi‖2
− (cTi x

? + di)ci
‖Aix? + bi‖2

]
+ F T ν?. (4.39)

Comparing (4.39) with the left-hand-side of condition (4.36a), we find that they are equal to

each other. On the one hand, for any index k with ‖Akx? + bk‖2 < cTk x
? + dk we must have

λ?k = 0 by the complementary slackness (4.36e). Hence, for those indices

λ?k

[
ATk (Akx

? + bk)

‖Akx? + bk‖2
−

(cTk x
? + dk)ck

‖Akx? + bk‖2

]
= λ?k

[
ATk (Akx

? + bk)

‖Akx? + bk‖2
− ck

]
= 0.

On the other hand, for those indices with ‖Aix? + bi‖2 = cTt x
? + di, we have

λ?i

[
ATi (Aix

? + bi)

‖Aix? + bi‖2
− (cTi x

? + di)ci
‖Aix? + bi‖2

]
= λ?i

[
ATi (Aix

? + bi)

‖Aix? + bi‖2
− ci

]
.

Therefore, condition (4.38a) is satisfied and we conclude that (x?, ξ?, η?, µ?) is a KKT point.
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Finally, we show that (x?, ξ?, η?, µ?) is also a saddle-point for the Lagrangian (4.37). By

KKT conditions (4.38b) – (4.38h) it is easy to check that L(x?, ξ, η, µ) − L(x?, ξ?, η?, µ?) ≤ 0

for all ξ ∈ Rm+ and η ∈ Rm+ . Moreover, because (x?, λ?) is a saddle-point for the Lagrangian

associated with SOCP (4.32a) – (4.32c), we know that x? must be a global solution. Due the

equivalence between problems (4.32a) – (4.32c) and (4.35a) – (4.35d), x? is a global optimum

for problem (4.35a) – (4.35d), too. In other words, x? minimizes L(x, ξ?, η?, µ?), i.e., we have

L(x, ξ?, η?, µ?)− L(x?, ξ?, η?, µ?) ≥ 0 for all x ∈ Rn. This completes the proof.

Due to the satisfaction of strong duality, our optimization dynamics can be applied here to

solve QCQP (4.35a) – (4.35d) instead of SOCP (4.32a) – (4.32c).

4.7.3 The Associated Optimization Dynamics

The optimization dynamics associated with problem (4.35a) – (4.35d) can be written as

ẋ := −f −
m∑
i=1

2ξi
[
ATi (Aix+ bi)− (cTi x+ di)ci

]
+

m∑
i=1

ηici − F Tµ

= −f −
m∑
i=1

2ξi (Pix+ qi) +
m∑
i=1

ηici − F Tµ (4.40a)

ξ̇i :=
[
(Aix+ bi)

T (Aix+ bi)− (cTi x+ di)
2
]+

ξi
=
[
xTPix+ 2qTi x+ ri

]+

ξi
(4.40b)

η̇i :=
[
− cTi x− di

]+

ηi
(4.40c)

µ̇ := Fx− g. (4.40d)

We are here interested in applying dynamics (4.40a) – (4.40d) to solve SOCP (4.32a) – (4.32c)

because it has a distributed structure, as we have illustrated in Section 4.5.

In comparison, we discover that the optimization dynamics directly associated with SOCP

(4.32a) – (4.32c) itself does not have such a distributed structure. To be more specific, SOCP

(4.32a) – (4.32c) has the following optimization dynamics

ẋ := −f −
m∑
i=1

λi

[
ATi (Aix+ bi)

‖Aix+ bi‖2
− ci

]
− F T ν (4.41a)

λ̇i :=
[
‖Aix+ bi‖2 − cTi x− di

]+

λi
(4.41b)

ν̇ := Fx− g. (4.41c)
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Now comparing dynamics (4.41a) with (4.40a) we notice that (4.41a) contains 2-norm terms

‖Aix+ bi‖2, for i = 1, · · · ,m, in its expression. To compute each term ‖Aix+ bi‖2 we need to

know every element of Aix+ bi, and, therefore, dynamics (4.41a) is difficult to be computed in

a distributed manner. This is the major difference between dynamics (4.41a) and (4.40a).

4.7.4 Simulations

In this subsection, we present an SOCP example and employ both optimization dynamics

(4.40a) – (4.40d) and (4.41a) – (4.41c), respectively, to solve this example. We would like to

demonstrate the effectiveness of dynamics (4.40a) – (4.40d). Moreover, when compared with

(4.41a) – (4.41c), we would also like to show that dynamics (4.40a) – (4.40d) has an even better

convergence performance.

Example 3. Consider the SOCP (4.32a) – (4.32c) with following coefficient matrices

f =
[

1 1 1
]T

A1 = I3, b1 =
[

1 0 1
]T
, c1 =

[
2 0 0

]T
, d1 = 10

A2 =

2 1 −3

1 −2 0

 , b2 =
[
− 6 − 4

]T
, c2 =

[
0 1 1

]T
, d2 = 10

F =
[

1 − 1 2
]
, g = 5.

Solving Example 3 using the MATLAB-based convex optimization software CVX toolbox,

we obtain the global optimal solution x? = (2.2408,−3.3532,−0.2970).

Next we apply optimization dynamics (4.40a) – (4.40d) and (4.41a) – (4.41c), respectively,

to solve this same SOCP example and compare their performances.

We use MATLAB ODE solver ode45 to compute the solutions of optimization dynamics

(4.40a) – (4.40d) and (4.41a) – (4.41c) associated with Example 3. Trajectories of the primal

variables are respectively plotted in Fig. 4.5. Starting from the same initial point, we can see

that both dynamical systems converge to the correct optimal solution x?.

If we further compare the performances of dynamics (4.40a) – (4.40d) and (4.41a) – (4.41c),

we find that the former system has a faster convergence.
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Figure 4.5 Trajectories of the primal variables: in the left subfigure we show the convergence

of optimization dynamics (4.40a) – (4.40d) associated with Example 3, whereas in

the right one we show the convergence of optimization dynamics (4.41a) – (4.41c)

Specifically, dynamics (4.40a) – (4.40d) converges to the optimal solution within 10 seconds

while in comparison dynamics (4.41a) – (4.41c) takes more than 20 seconds to settle down.

Besides, the trajectories of dynamics (4.40a) – (4.40d) is smoother and without any oscillations.

This suggests that our optimization dynamics (4.40a) – (4.40d) not only possesses a distributed

computation structure but also has a better convergence behavior.

4.8 Summary

In this chapter, we have studied the non-convex QCQP problems via the continuous-time

optimization dynamics approach. We have developed a necessary and sufficient condition to

characterize saddle-points for those non-convex QCQPs. Based on this result, we have further

derived a convergence analysis for the associated optimization dynamics. For certain networked

non-convex QCQPs, we have also pointed out an intrinsic distributed computation structure

of the optimization dynamics approach when the network is sparsely connected. Moreover, we

have presented several applications, including MAXCUT, phase recovery, and convex SOCPs,

to demonstrate the effectiveness of our approach.
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CHAPTER 5. OPTIMAL POWER FLOW PROBLEMS

In power systems, the optimal power flow (OPF) problem seeks an optimal solution of bus

voltage magnitudes and phase angles that minimizes a given generation cost, subject to the

power balance at each bus as well as other network operating constraints. The power balance

is characterized by power flow equations and operational constraints usually include voltage

magnitude limits, line flow limits, etc. In general, OPF problems are non-convex quadratically

constrained quadratic programmings (QCQPs).

Lavaei and Low (2012) has theoretically proved that under certain conditions there is no

optimal duality gap between the primal OPF problem and its semi-definite programming (SDP)

dual relaxation. Although counterexamples exist, numerical experience suggests that this SDP

dual relaxation approach tends to be exact in many cases.

Note that strong duality implies existence of saddle-points, so we can apply the optimization

dynamical system proposed in Chapter 4 to search them. Luckily, due to the sparsity of power

networks, our optimization dynamics approach unveils a deep, distributed structure of the OPF

problem at the bus level.

Specifically, the optimization dynamics treats each bus in the power network as an intelligent

computing agent, which only requires the local information from neighboring buses to update

its own voltage variables and Lagrange multipliers. Discovering such a distributed structure of

the optimization dynamics is also the main contribution of this chapter.

Moreover, we discover that our optimization dynamics may still converge to a saddle-point

even when the SDP dual relaxation fails to maintain a zero optimal duality gap. This fact

reveals the existence of a stronger Lagrange dual to the OPF problem. It also suggests that the

optimization dynamics approach can find global OPF solutions under more general conditions

than the SDP dual relaxation approach.
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This chapter is organized as follows. In Section 5.1, we first present the formulation of OPF

problems. In Section 5.2, we apply the continuous-time optimization dynamics and unveil a

distributed OPF structure. In Section 5.3, we derive a sufficient condition for the global OPF

solution. In Section 5.4, we compare our approach with the SDP dual relaxations. Finally, a

convergence analysis and simulation results are presented in Sections 5.5 and 5.6, respectively.

5.1 Formulation of the OPF Problem

Consider an n-bus power network with the set of all buses N = {1, 2, · · · , n}. We denote

the set of generator buses as G = {1, 2, · · · ,m} ⊆ N and the set of all transmission lines as

L ⊆ N ×N , respectively. In this work, we model the power network as an undirected graph.

5.1.1 The Original OPF Problem

Let Vk and Ik, respectively, denote the complex-valued voltage and current at each bus

k ∈ N . Let P dk + iQdk represent the active and reactive power demands for each bus k ∈ N .

Let P gl + iQgl represent the active and reactive power generated at each generator bus l ∈ G.

Besides, let Skl represent the apparent power flow on the transmission line (k, l) ∈ L. We define

the cost function fl(P
g
l ) := cl2(P gl )2 + cl1P

g
l + cl0 with cl2 > 0 to account for the quadratic cost

of the active power generation at each generator bus l ∈ G. Thus, the OPF problem can be

formulated as

minimize
P g
l , Vk, Ik

∑
l∈G

fl(P
g
l ) (5.1a)

subject to

Pmin
l ≤ P gl ≤ P

max
l ∀l ∈ G (5.1b)

Qmin
l ≤ Qgl ≤ Q

max
l ∀l ∈ G (5.1c)

(V min
k )2 ≤ |Vk|2 ≤ (V max

k )2 ∀k ∈ N (5.1d)

|Skl| ≤ Smax
kl ∀(k, l) ∈ L (5.1e)

VlI
∗
l = (P gl − P

d
l ) + i(Qgl −Q

d
l ) ∀l ∈ G (5.1f)

VkI
∗
k = −P dk − iQdk ∀k ∈ N \ G (5.1g)
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where the optimization variables are P gl ∈ R, Vk ∈ C, and Ik ∈ C, for all l ∈ G and k ∈ N . The

constants Pmin
l , Pmax

l , Qmin
l , Qmax

l , V min
k , V max

k , and Smax
kl are the given operating limits on

the power system. Particularly, we require V min
k > 0 for all k ∈ N because voltage magnitudes

should usually range from 0.9 to 1.1 (PU) for all buses.

Assumption 4. We assume that OPF problem (5.1a) – (5.1g) is feasible and that at least one

generator bus has a nonzero net generation.

Remark 8. The second part of Assumption 4 is reasonable since the load buses must absorb

some nonzero power from the generators to satisfy their load demands.

This work prefers using rectangular coordinates to represent OPF problem (5.1a) – (5.1g),

so we apply the equivalent Π model for every transmission line (k, l) ∈ L, as shown in Fig.

5.1. Let ykl := (Rkl + iXkl)
−1 be the series admittance, and let bkl denote the total shunt

capacitance. If there is no transmission line between bus k and bus l, i.e., (k, l) /∈ L, then

ykl := 0. Define the admittance matrix Y to be an n× n complex-valued matrix, whose (k, l)

entry Y (k, l) := −ykl if k 6= l, and Y (k, l) := 1
2

∑
m∈N (k) bkm +

∑
m∈N (k) ykm if k = l. Thus, we

can rewrite the Kirchhoff’s law as I = Y V , where both V and I are complex-valued column

vectors with V := [V1 V2 · · · Vn]T ∈ Cn and I := [I1 I2 · · · In]T ∈ Cn.

Figure 5.1 The equivalent Π model of a transmission line (k, l)

Next, let us split the real and imaginary parts of the complex voltage variable V and stack

them into a 2n-dimensional real-valued vector

U := [ Re{V1} · · · Re{Vn} Im{V1} · · · Im{Vn} ]T ∈ R2n.

Also let e1, · · · , en denote the n standard basis vectors in Rn. For all k ∈ N and (k, l) ∈ L,

we define Yk := eke
T
k Y and Ykl := (ȳkl + ykl)ele

T
l − (ykl)ele

T
m. Then, we adopt the following
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coefficient matrix definitions from Lavaei and Low (2012):

Yk :=
1

2

Re{Yk + Y T
k } Im{Y T

k − Yk}

Im{Yk − Y T
k } Re{Yk + Y T

k }

 ∈ R2n×2n

Ykl :=
1

2

Re{Ykl + Y T
kl } Im{Y T

kl − Ykl}

Im{Ykl − Y T
kl } Re{Ykl + Y T

kl }

 ∈ R2n×2n

Yk := −1

2

Im{Yk + Y T
k } Re{Yk − Y T

k }

Re{Y T
k − Yk} Im{Yk + Y T

k }

 ∈ R2n×2n

Ykl := −1

2

Im{Ykl + Y T
kl } Re{Ykl − Y T

kl }

Re{Y T
kl − Ykl} Im{Ykl + Y T

kl }

 ∈ R2n×2n

Mk :=

ekeTk 0

0 eke
T
k

 ∈ R2n×2n.

By the coefficient matrices defined above, we have Re{VkI∗k} = UTYkU , Im{VkI∗k} = UTYkU ,

|Vk|2 = UTMkU , and |Skl|2 = (UTYklU)2 + (UTYklU)2. Thus OPF problem (5.1a) – (5.1g)

can be rewritten as

minimize
U∈R2n

∑
l∈G

fl
(
UTYlU + P dl

)
(5.2a)

subject to

Pmin
k − P dk ≤ UTYkU ≤ Pmax

k − P dk ∀k ∈ N (5.2b)

Qmin
k −Qdk ≤ UTYkU ≤ Qmax

k −Qdk ∀k ∈ N (5.2c)

(V min
k )2 ≤ UTMkU ≤ (V max

k )2 ∀k ∈ N (5.2d)

(UTYklU)2 + (UTYklU)2 ≤ (Smax
kl )2 ∀(k, l) ∈ L (5.2e)

where we define Pmin
k = Pmax

k = Qmin
k = Qmax

k := 0 for all load buses k ∈ N \ G. Note that in

OPF problem (5.2a) – (5.2e) the only optimization variable is the 2n-dimensional real vector

U ∈ R2n. Moreover, all coefficient matrices Yk, Yk, Mk, Ykl, and Ykl are derived from the

admittance matrix Y and hence are sparse. We will use this sparsity property later to unveil

a distributed OPF structure via the associated optimization dynamics.
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5.1.2 Infinite Solutions to the OPF Problem

Here, we would also like to point out some structural properties of the coefficient matrices

Yk, Yk, Mk, Ykl, and Ykl. These matrices are in fact of the same structure

Y =

 Y1 Y2

Y T
2 Y1

 =

 Y1 Y2

−Y2 Y1


where Y1 is symmetric and Y2 is anti-symmetric.

Lemma 3. The Y matrix has the following structural properties:

• Y is symmetric and hence all its eigenvalues are real.

• Let λ be an eigenvalue of Y with associated eigenvector x =
[
xT1 xT2

]T
; that is, Yx = λx.

Then there exists another eigenvector x̄ =
[
−xT2 xT1

]T
such that x̄ is perpendicular to x

and Yx̄ = λx̄. In other words, each eigenvalue of Y has a geometric multiplicity of at

least two.

• Given x =
[
xT1 xT2

]T
and x̄ =

[
−xT2 xT1

]T
, we can always have (i) x̄TYx = 0 and (ii)

xTYx = x̄TYx̄ = x̂TYx̂, where x̂ = cos(θ)x+ sin(θ)x̄, for all 0 ≤ θ < 2π.

Proof of Lemma 3. These results can be derived via basic linear algebra.

Such structural properties of the coefficient matrices Yk, Yk, Mk, Ykl, and Ykl result in

an infinite number of solutions to OPF problem (5.2a) – (5.2e).

Corollary 3. Suppose that OPF problem (5.2a) – (5.2e) has an optimal solution, which is given

by U? =
[
(U?1 )T (U?2 )T

]T
, then there is another orthonormal solution Ū? =

[
(−U?2 )T (U?1 )T

]T
such that all optimal solutions to OPF problem (5.2a) – (5.2e) can be expressed as

U :=
{
Û
∣∣∣ Û = cos(θ)U? + sin(θ)Ū?, 0 ≤ θ < 2π

}
.

Proof of Corollary 3. Applying Lemma 3 to (5.2a) – (5.2e) yields the result easily.

Remark 9. Each Û ∈ U , in fact, represents the same OPF solution but seen from a different

phase angle reference. If we select one bus in the network as the reference (zero phase angle),

then there exists a unique representative for the equivalent optimal solution set U .
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5.1.3 The Modified OPF Problem

To avoid the technical challenges caused by the uncountably infinite number of equivalent

OPF solutions, we propose the following modified OPF problem

minimize
U∈R2n

∑
l∈G

fl
(
UTYlU + P dl

)
+ (eTn+1U)2 (5.3a)

subject to

Pmin
k − P dk ≤ UTYkU ≤ Pmax

k − P dk ∀k ∈ N (5.3b)

Qmin
k −Qdk ≤ UTYkU ≤ Qmax

k −Qdk ∀k ∈ N (5.3c)

(V min
k )2 ≤ UTMkU ≤ (V max

k )2 ∀k ∈ N (5.3d)

(UTYklU)2 + (UTYklU)2 ≤ (Smax
kl )2 ∀(k, l) ∈ L. (5.3e)

The only difference between OPF problems (5.2a) – (5.2e) and (5.3a) – (5.3e) is that (5.3a)

has an extra term (eTn+1U)2 at the cost function. This fixes bus 1 as the slack bus by setting

Im{V1} = 0. Recall that en+1 denotes the (n + 1)-th elementary vector in R2n and therefore

we have eTn+1U = Im{V1}. Note that the optimal cost in (5.3a) will force Im{V1} to zero.

Compared with the solution set of OPF (5.2a) – (5.2e), problem (5.3a) – (5.3e) now locally

has two isolated optima, i.e., the 0-degree (Re{V1} > 0) and 180-degree (Re{V1} < 0) solutions

with respect to the slack bus.

Lemma 4. OPF formulations (5.2a) – (5.2e) and (5.3a) – (5.3e) are equivalent to each other,

in the sense that given an optimum to one problem, we can recover a corresponding optimum

to the other problem with a same optimal cost.

Proof of Lemma 4. Suppose that U? minimizes problem (5.2a) – (5.2e). Then in its solution

set there must be one Û for some θ such that ÛTYlÛ = U?TYlU
? for all l ∈ G and eTn+1Û = 0.

Thus, Û minimizes problem (5.3a) – (5.3e) and yields a same optimal cost as (5.2a) – (5.2e).

Conversely, let U? be an optimum to problem (5.3a) – (5.3e). Then both terms in the cost

function
∑

l∈G fl
(
UTYlU + P dl

)
and (eTn+1U)2 should be minimized. Since (eTn+1U)2 ≥ 0, we

must have eTn+1U
? = 0. Therefore, U? minimizes problem (5.2a) – (5.2e), too.
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5.2 The Optimization Dynamics Approach

In this section, we employ the optimization dynamical system (3.1a) – (3.1c) defined in

Chapter 3 to solve the non-convex, modified OPF problem (5.3a) – (5.3e).

5.2.1 The Associated Optimization Dynamics

Let λk, λk, γk, γk, µk, µk, and νkl be the Lagrange multipliers associated with constraints

(5.3b) – (5.3e), respectively. Also define the bold Greek variables

λk := λk − λk, γk := γk − γk, µk := µk − µk, ∀k ∈ N .

Then the Lagrangian associated with OPF problem (5.3a) – (5.3e) is given by

L(U, λ, γ, µ, ν) := L1(U) + L2(U, λ, γ, µ) + L3(U, ν) + (eTn+1U)2 (5.4)

where

L1(U) :=
∑
l∈G

[
cl2(UTYlU + P dl )2 + cl1(UTYlU + P dl ) + cl0

]
L2(U, λ, γ, µ) :=

∑
k∈N

[
λk(U

TYkU + P dk ) + γk(U
TYkU +Qdk) + µkU

TMkU

+ λkP
min
k − λkPmax

k + γ
k
Qmin
k − γkQmax

k + µ
k
(V min
k )2 − µk(V max

k )2
]

L3(U, ν) :=
∑

(k,l)∈L

νkl

[
(UTYklU)2 + (UTYklU)2 − (Smax

kl )2
]
.

We need to point out that the Lagrangian (5.4) is a quartic polynomial function of the primal

variable U , and, at present, we do not know either how to globally minimize (5.4) over U ∈ R2n

or how to derive an explicit Lagrange dual for OPF problem (5.3a) – (5.3e).

Now we can use the Lagrange (5.4) to derive an optimization dynamics for OPF problem

(5.3a) – (5.3e). Let B(U, λ, γ, µ, ν) be the 2n× 2n symmetric matrix

B(U, λ, γ, µ, ν) :=
∑
l∈G

[
2cl2(UTYlU + P dl )Yl + cl1Yl

]
+
∑
k∈N

(
λkYk + γkYk + µkMk

)
+
∑

(k,l)∈L

2νkl

[
(UTYklU)Ykl + (UTYklU)Ykl

]
. (5.5)
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Then following definitions (3.1a) – (3.1c), we formulate the optimization dynamics associated

with OPF problem (5.3a) – (5.3e) as

U̇ := −2α
[
B(U, λ, γ, µ, ν) +

(
en+1e

T
n+1

) ]
U (5.6a)

λ̇k := α
[
Pmin
k − P dk − UTYkU

]+

λk
(5.6b)

λ̇k := α
[
UTYkU − Pmax

k + P dk

]+

λk
(5.6c)

γ̇
k

:= α
[
Qmin
k −Qdk − UTYkU

]+

γ
k

(5.6d)

γ̇k := α
[
UTYkU −Qmax

k +Qdk

]+

γk
(5.6e)

µ̇
k

:= α
[
(V min
k )2 − UTMkU

]+

µ
k

(5.6f)

µ̇k := α
[
UTMkU − (V max

k )2
]+

µk
(5.6g)

ν̇kl := α
[
(UTYklU)2 + (UTYklU)2 − (Smax

kl )2
]+

νkl
(5.6h)

for all k ∈ N and (k, l) ∈ L. The constant parameter α > 0 in (5.6a) – (5.6h) is used for tuning

the convergence speed without affecting its locally asymptotic stability. By default, we choose

α = 1. Simulations show that a large α fastens the convergence of dynamics (5.6a) – (5.6h).

5.2.2 A Distributed OPF Structure

We are interested in solving OPF problem (5.3a) – (5.3e) via the optimization dynamics

approach, since dynamics (5.6a) – (5.6h) unveils a distributed structure of the OPF problem.

Let us view each bus in the power network as an individual computing agent. Suppose that

each agent k, for all k ∈ N , stores and manages the following constants and variables

• coefficient matrices: Yk, Yk, Mk, Ykl, Ykl, for all l ∈ N (k)

• load demands and operational limits: P dk , Qdk, V
min
k , V max

k , Smax
kl , for all l ∈ N (k)

• generation parameters: ck2, ck1, ck0, Pmin
k , Pmax

k , Qmin
k , Qmax

k , if k ∈ G

• Lagrange multipliers: λk, λk, γk, γk, µk, µk, νkl, for all l ∈ N (k)

• voltage variables: Uk and Uk+n
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where Uk and Uk+n denote the k-th and (k+n)-th element in vector U , respectively, and N (k)

denotes the set that contains all the neighboring buses of bus k. If bus k is connected with bus

l in the power network, i.e., l ∈ N (k) or k ∈ N (l), then we allow their corresponding agents to

communicate with each other.

Before we move on, let us introduce a lemma that characterizes the sparsity of coefficient

matrices Yk, Yk, Mk, Ykl, and Ykl in dynamics (5.6a) – (5.6h).

Lemma 5. For all k ∈ N and (k, l) ∈ L, Yk, Yk, Mk, Ykl, and Ykl are sparse matrices:

(1) All the entries of Mk are zeros, except two 1 entries on diagonal positions (k, k) and

(k + n, k + n).

(2) Besides the two diagonal positions (k, k) and (k+ n, k+ n), both Yk and Yk only have

non-zero entries on positions (k, l), (k, l + n), (k + n, l), and (k + n, l + n), for l ∈ N (k).

(3) Both Ykl and Ykl only have non-zero entries on positions (k, k), (k + n, k + n), (k, l),

(l, k), (k + n, l + n), (l + n, k + n), (k, l + n), (l + n, k), (k + n, l), and (l, k + n).

Proof of Lemma 5. This is a direct result following from definitions of these matrices.

Theorem 21. According to dynamics (5.6a) – (5.6h), each bus only uses the local information

from neighbors to compute its gradients of voltage variables and Lagrange multipliers.

Proof of Theorem 21. Without loss of generality, let us consider bus k in the power network.

By Lemma 5, we know that the Lagrangian multipliers’ dynamics (5.6b) – (5.6h) only depend

on Uk, Uk+n, Ul, and Ul+n, for all l ∈ N (k).

Moreover, we note that the B(U, λ, γ, µ, ν) matrix in (5.6a) is a linear combination of Yk,

Yk, Mk, Ykl, and Ykl. Again, by Lemma 5, we can easily check that the computation of both

dynamics U̇k and U̇k+n only involves the terms Uk, Uk+n, λk, γk, µk, Ul, Ul+n, λl, γl, and νkl,

for all l ∈ N (k). Here, we need to explain more about the reference bus 1 because of the extra

term −2α
(
en+1e

T
n+1

)
U . Since all the entries of en+1e

T
n+1 are zeros except a only 1 entry on

the (n+ 1, n+ 1) position, we are in fact subtracting 2αUn+1 from dynamics U̇n+1. Hence, the

distributed OPF structure will not be affected. This completes the proof.
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Theorem 21 shows that dynamical system (5.6a) – (5.6h) has fully exploited a distributed

OPF structure into the bus level, so our optimization dynamics approach can be topologically

suitable for the physical settings of power networks. A fundamental reason for this distributed

OPF structure lies in the sparsity of power networks. Our result suggests that intelligent buses

suffice to cooperate with each other making global OPF decisions via a localized information

flow, which, as far as we know, has long been missed in literature.

Example 4. Let us consider a four-bus power network as shown in Fig. 5.2, where bus 1 is a

generator bus and others are load buses. The generator bus has a voltage magnitude constraint.

Besides, each load bus has a pair of active and reactive power generation constraints.

Figure 5.2 A four-bus power network

Example 4 is adopted from Lavaei and Low (2012). Since we are only using this example

to illustrate the distributed OPF structure, the detailed problem settings are omitted here.

Let µ be the Lagrange multiplier associated with the voltage magnitude constraint of bus

1. For each load bus k, 2 ≤ k ≤ 4, let λk and γk be the Lagrange multipliers associated with

the active and reactive power generation constraints, respectively. Then we can implement our

optimization dynamics for this example via the MATLAB Simulink toolbox, see Fig. 5.3.

Let us take bus 1 as an example to illustrate the distributed OPF structure. Since bus 1

is connected with buses 2 and 4 in the power network, agent 1 uses the voltage variables and

Lagrange multipliers from agents 2 and 4 as its inputs, and it also outputs its own voltage

variables to those two agents. Moreover, agent 1 has no communication with agent 3 because

there is no connection between their corresponding buses. Moreover, the same situation holds

for all the other buses. To sum up, we conclude that the computation structure of this Simulink

implementation mimics the same connection topology of the original power network.
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Figure 5.3 The Simulink implementation of the four-bus OPF

5.3 A Sufficient Characterization for Global Optimality

A key point involved in this chapter is to characterize the saddle-points for OPF problems

using the equilibrium of the associated optimization dynamics. We have already known that

any equilibrium point (U?, λ?, γ?, µ?, ν?) of dynamics (5.6a) – (5.6h) is a KKT point for OPF

problem (5.3a) – (5.3e). However, due to the non-convexity of OPF problems, a KKT point

may not necessarily be a saddle-point. Therefore, a natural question one would ask is: under

what conditions the KKT point obtained from dynamics (5.6a) – (5.6h) can be determined as a

saddle-point for OPF problem (5.3a) – (5.3e)? To begin with, we provide a sufficient condition

to characterize saddle-points for the Lagrangian (5.4).

Lemma 6. Suppose that OPF problem (5.3a) – (5.3e) has one KKT point (U?, λ?, γ?, µ?, ν?).

Then, it is also a saddle-point for the Lagrangian (5.4) if the difference

P (U) := L(U, λ?, γ?, µ?, ν?)− L(U?, λ?, γ?, µ?, ν?)

can be written as a sum-of-squares (SOS) polynomial in U .

Proof of Lemma 6. Because (U?, λ?, γ?, µ?, ν?) is a KKT point, we know that (i) U? is primal

feasible, i.e., U? satisfies all of the inequality constraints (5.3b) – (5.3e); (ii) (λ?, γ?, µ?, ν?) is

dual feasible, i.e., λ? ≥ 0, γ? ≥ 0, µ? ≥ 0, and ν? ≥ 0; and (iii) the complementary slackness
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condition holds. Using statements (i) – (iii), it is easy to show that for all λ ≥ 0, γ ≥ 0, µ ≥ 0,

and ν ≥ 0, we have

L(U?, λ?, γ?, µ?, ν?) ≥ L(U?, λ, γ, µ, ν). (5.7)

Next, because P (U) is an SOS polynomial in U , we have P (U) always non-negative. That is,

for all U ∈ R2n

L(U?, λ?, γ?, µ?, ν?) ≤ L(U, λ?, γ?, µ?, ν?). (5.8)

Combining inequalities (5.7) and (5.8), by Definition 8 we conclude that (U?, λ?, γ?, µ?, ν?) is

a saddle-point for the Lagrangian (5.4).

Now we are ready to develop an easier sufficient condition for checking saddle-points using

the equilibrium of dynamics (5.6a) – (5.6h).

Theorem 22. Suppose that optimization dynamics (5.6a) – (5.6h) converges to an equilibrium

(U?, λ?, γ?, µ?, ν?) with B(U?, λ?, γ?, µ?, ν?)U? = 0. If the matrix B(U?, λ?, γ?, µ?, ν?) � 0,

then (U?, λ?, γ?, µ?, ν?) is a saddle-point for the Lagrangian (5.4).

Proof of Theorem 22. Each equilibrium (U?, λ?, γ?, µ?, ν?) of dynamics (5.6a) – (5.6h) with

B(U?, λ?, γ?, µ?, ν?)U? = 0 satisfies all KKT conditions for OPF problem (5.3a) – (5.3e). To

prove that (U?, λ?, γ?, µ?, ν?) is also a saddle-point for the Lagrangian (5.4), by Lemma 6 we

only need to show that P (U) is an SOS polynomial in U .

Neglecting all the constant terms in the Lagrangian (5.4), we define the function

h(U, λ, γ, µ, ν) :=
∑
l∈G

[
cl2(UTYlU)2 + 2cl2P

d
l U

TYlU + cl1U
TYlU

]
+
∑
k∈N

(
λkU

TYkU + γkU
TYkU + µkU

TMkU
)

+
∑

(k,l)∈L

νkl

[
(UTYklU)2 + (UTYklU)2

]
+ (eTn+1U)2.

Then the difference polynomial P (U) can be given by

P (U) = L(U, λ?, γ?, µ?, ν?)− L(U?, λ?, γ?, µ?, ν?)

= h(U, λ?, γ?, µ?, ν?)− h(U?, λ?, γ?, µ?, ν?). (5.9)
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On the one hand, we notice that

h(U, λ?, γ?, µ?, ν?) = UTB(U?, λ?, γ?, µ?, ν?)U +
∑
l∈G

cl2

[
(UTYlU)2 − 2(U?TYlU

?)(UTYlU)
]

+
∑

(k,l)∈L

ν?kl

[
(UTYklU)2 − 2(U?TYklU

?)(UTYklU)
]

+
∑

(k,l)∈L

ν?kl

[
(UTYklU)2 − 2(U?TYklU

?)(UTYklU)
]

+ (eTn+1U)2. (5.10)

On the other hand, since B(U?, λ?, γ?, µ?, ν?)U? = 0 we must have eTn+1U
? = 0 and

h(U?, λ?, γ?, µ?, ν?) = −
∑
l∈G

cl2

[
(U?TYlU

?)2
]
−
∑

(k,l)∈L

ν?kl

[
(U?TYklU

?)2 + (U?TYklU
?)2
]
.

(5.11)

Substituting (5.10) and (5.11) into (5.9) yields

P (U) = UTB(U?, λ?, γ?, µ?, ν?)U + (eTn+1U)2 +
∑
l∈G

cl2

[
(UTYlU)− (U?TYlU

?)
]2

+
∑

(k,l)∈L

ν?kl

{[
(UTYklU)− (U?TYklU

?)
]2

+
[
(UTYklU)− (U?TYklU

?)
]2
}
. (5.12)

Because cl2 > 0 for all l ∈ G, ν?kl ≥ 0 (by the dual feasibility), and B(U?, λ?, γ?, µ?, ν?) � 0,

the polynomial P (U) is now expressed in terms of a sum of squares.

We can only derive a sufficient saddle-point condition here because the Lagrangian (5.4) is

a multivariate, quartic polynomial. Hence, the equivalence result between the sum of squares

condition and polynomials’ non-negativity (Theorem 4) cannot be applied.

5.4 Comparisons with the SDP Dual Relaxation Approach

This section compares the applicability of the proposed optimization dynamics approach

with the existing SDP dual relaxation approach for solving OPF problems. We show that our

optimization dynamics can find global OPF solutions under more general conditions.

5.4.1 The SDP Dual Relaxation Approach

An efficient approach for solving the OPF problem is to study its SDP dual relaxation, see

Lavaei and Low (2012). Different from our work, the SDP dual relaxation is developed from



www.manaraa.com

76

the original OPF problem (5.2a) – (5.2e). By the change of variable W = UUT , an equivalent

form to OPF formulation (5.2a) – (5.2e) is given by

minimize
α, U, W

∑
l∈G

αl (5.13a)

subject to

Pmin
k − P dk ≤ Tr{YkW} ≤ Pmax

k − P dk ∀k ∈ N (5.13b)

Qmin
k −Qdk ≤ Tr{YkW} ≤ Qmax

k −Qdk ∀k ∈ N (5.13c)

(V min
k )2 ≤ Tr{MkW} ≤ (V max

k )2 ∀k ∈ N (5.13d)

Lkl � 0 ∀(k, l) ∈ L (5.13e)

Cl � 0 ∀l ∈ G (5.13f)

W = UUT (5.13g)

where we define

Lkl :=


−(Smax

kl )2 Tr{YklW} Tr{YklW}

Tr{YklW} −1 0

Tr{YklW} 0 −1


Cl :=

cl1Tr{YlW}+ cl1P
d
l + cl0 − αl

√
cl2
(
Tr{YlW}+ P dl

)
√
cl2
(
Tr{YlW}+ P dl

)
−1

 .
Let ρ

k
, ρk, ξk, ξk, ζk, and ζk, ∀k ∈ N , respectively, be the scalar Lagrange multipliers

associated with the inequality constraints (5.13b) – (5.13d). Also let symmetric matrices

Hkl :=


h1
kl h2

kl h3
kl

h2
kl h4

kl h5
kl

h3
kl h5

kl h6
kl

 and Rl :=

 1 r1
l

r1
l r2

l


be the matrix Lagrange multipliers associated with LMI’s (5.13e) and (5.13f), respectively.

Define the bold Greek variables

ρk := ρk − ρk, ξk := ξk − ξk, ζk := ζk − ζk, ∀k ∈ N .
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Furthermore, define the following functions

d :=
∑
k∈N

[
ρ
k
Pmin
k − ρkPmax

k + ρkP
d
k + ξ

k
Qmin
k − ξkQmax

k + ξkQ
d
k + ζ

k
(V min
k )2 − ζk(V max

k )2
]

+
∑
l∈G

[
(2
√
cl2r

1
l + cl1)P dl + cl0 − r2

l

]
−
∑

(k,l)∈L

[
(Smax
kl )2h1

kl + h4
kl + h6

kl

]
(5.14)

A :=
∑
k∈N

(
ρkYk + ξkYk + ζkMk

)
+
∑
l∈G

(
2
√
cl2r

1
l + cl1

)
Yl +

∑
(k,l)∈L

2
(
h2
klYkl + h3

klYkl

)
(5.15)

and then the Lagrange dual relaxation to problem (5.13a) – (5.13g) can be formulated as

maximize d (5.16a)

subject to

A � 0, Hkl � 0, Rl � 0 (5.16b)

ρ
k
≥ 0, ρk ≥ 0, ξ

k
≥ 0, ξk ≥ 0, ζ

k
≥ 0, ζk ≥ 0. (5.16c)

Since the Lagrange dual problem (5.16a) – (5.16c) is an SDP, it is convex and can be solved

efficiently. Based on the optimal dual solution, Lavaei and Low (2012) has derived a sufficient

condition under which strong duality holds between the primal OPF (5.13a) – (5.13g) and its

SDP dual relaxation (5.16a) – (5.16c). This result is summarized below.

Theorem 23. [Lavaei and Low (2012) Theorem 5] Strong duality holds for (5.13a) – (5.13g)

provided that the SDP dual relaxation (5.16a) – (5.16c) has an optimal solution such that the

positive semi-definite matrix Aopt has a zero eigenvalue of multiplicity two.

If there is no optimal duality gap between problems (5.13a) – (5.13g) and (5.16a) – (5.16c),

an optimal solution to OPF (5.13a) – (5.13g) can be easily recovered from the dual optimum.

Lavaei and Low (2012) has also concluded that strong duality holds for many practical OPF

problems. In other words, the SDP dual relaxation approach is widely applicable.

5.4.2 Comparisons with the SDP Dual Relaxation

Our next result builds a connection between the optimization dynamics approach and the

SDP dual relaxation approach. We show that, under the conditions of Theorem 22, these two

approaches are equivalent to each other.
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Theorem 24. The SDP dual relaxation (5.16a) – (5.16c) has a zero optimal duality gap with

OPF problem (5.13a) – (5.13g) if and only if optimization dynamics (5.6a) – (5.6h) has an

equilibrium (U?, λ?, γ?, µ?, ν?) with B(U?, λ?, γ?, µ?, ν?)U? = 0 and B(U?, λ?, γ?, µ?, ν?) � 0.

In this case, we also have B(U?, λ?, γ?, µ?, ν?) = Aopt.

Proof of Theorem 24. This proof is quite long so we have moved it into the Appendix.

Combining Theorems 22 and 24 reveals the fact that, if there exists a zero optimal duality

gap between OPF problem (5.13a) – (5.13g) and its SDP dual relaxation (5.16a) – (5.16c), then

strong duality holds for OPF problem (5.2a) – (5.2e). In this case, we can utilize optimization

dynamics (5.6a) – (5.6h) to seek a saddle-point for the associated Lagrangian (5.4). To sum up,

the proposed optimization dynamics can be applied to all OPF problems for which the SDP

dual relaxation approach has zero optimal duality gaps. As noted in Lavaei and Low (2012),

this class of OPF problems is quite large in practice.

Moreover, we discover that optimization dynamics (5.6a) – (5.6h) may still converge to a

saddle-point for the Lagrangian (5.4) even when the SDP dual relaxation fails to provide a

zero optimal duality gap. This will be shown by Example 6 in the next section. Therefore, we

conclude that the proposed optimization dynamics approach is more applicable than the SDP

dual relaxation approach.

5.4.3 Two Three-Bus OPF Examples

Let us consider the three-bus power network as shown in Fig. 5.4. This example is adopted

from Lesieutre et al. (2011) with a 100 MVA base. The parameters of the network’s Π model

as well as the power demand constraints are given by Tables 5.1 and 5.2, respectively. In Table

5.2, the numerical values P dk + iQdk indicate the active and reactive power demands in MW and

MVAR. Moreover, there are no limits on the active and reactive power outputs for generator

buses 1 and 2, but generator 3 is assumed to be a synchronous condenser, that is, P g3 = 0. The

coefficients of the quadratic power generation costs for generators 1 and 2 are given in Table

5.3. The voltage magnitudes at all buses are constrained to the range from 0.95 to 1.1 PU.

Finally, we enforce a line flow limit of 60 MVA on the transmission line between buses 2 and 3.
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Figure 5.4 A three-bus power network
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Figure 5.5 Convergence of the three-bus OPF with a line-flow limit 60 MVA
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Figure 5.6 Convergence of the three-bus OPF with a line-flow limit 52 MVA
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Table 5.1 Parameters of the three-bus power network

From Bus To Bus R X b

1 3 0.065 0.620 0.450

3 2 0.025 0.750 0.700

1 2 0.042 0.900 0.300

Table 5.2 Power demands of the three-bus OPF

P d1 + jQd1 P d2 + jQd2 P d3 + jQd3

110 + j40 110 + j40 95 + j50

Table 5.3 Generation costs of the three-bus OPF

Generator c2 c1 c0

1 $0.11 per MWh2 $5 per MWh $0

2 $0.085 per MWh2 $1.2 per MWh $0

Table 5.4 A global solution to the three-bus OPF with a line-flow limit 60 MVA

V1 V2 V3

1.069∠0.000◦ 1.028∠9.916◦ 1.001∠−13.561◦

Table 5.5 A global solution to the three-bus OPF with a line-flow limit 52 MVA

V1 V2 V3

1.100∠0.000◦ 0.973∠5.739◦ 0.950∠−16.417◦
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Example 5. Consider the OPF formulation (5.17a) – (5.17e). We have scaled down the cost

function by 1000.

minimize
U∈R6

f1(U) + f2(U) (5.17a)

subject to UTY3U + 0.95 = 0 (5.17b)

0.952 ≤ UTMkU ≤ 1.12 ∀k = 1, 2, 3 (5.17c)

(UTY23U)2 + (UTY23U)2 ≤ 0.62 (5.17d)

(UTY32U)2 + (UTY32U)2 ≤ 0.62 (5.17e)

where

f1(U) = 1.1(UTY1U + 1.1)2 + 0.5(UTY1U + 1.1)

f2(U) = 0.85(UTY2U + 1.1)2 + 0.12(UTY2U + 1.1).

We apply the optimization dynamics approach to solve problem (5.17a) – (5.17e). In our

simulation, we randomly choose an initial condition (U0, λ0, µ0, ν0) with `∞ norm less than 1

and U0 6= 0. We find that the associated optimization dynamics converges to an equilibrium

(U?, λ?, µ?, ν?) with cost $5707.1. The trajectories are plotted in Fig. 5.5. When represented

in the standard polar coordinates with bus 1 as the reference, we can recover the same set of

optimal voltages yielded by the MATPOWER toolbox, see Table 5.4.

When we substitute the equilibrium (U?, λ?, µ?, ν?) back to verify the optimality conditions

in Theorem 22, we obtain a positive semi-definite matrix B(U?, λ?, µ?, ν?) with eigenvalues 0,

0, 0.342, 0.342, 1.339, and 1.339. Therefore, we can guarantee the voltages shown in Table 5.4

are exactly the optimal solutions for Example 5.

When we check the strong duality conditions in Theorem 23, we find that they are satisfied

and hence there exists no duality gap between this OPF example and its SDP dual relaxation.

Moreover, we have Aopt = B(U?, λ?, µ?, ν?). Hence, Theorem 24 has also been verified.

Example 6. Consider the same OPF formulation (5.17a) – (5.17e) with a minor change of

parameters. We give a new line flow limit between buses 2 and 3 as 52 MVA.

For this example, we discover that the optimization dynamics converges to an equilibrium

(U?, λ?, µ?, ν?) with cost $5807.9. The trajectories as well as the voltage solutions are shown
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in Fig. 5.6 and Table 5.5, respectively. However, when we check the optimality conditions in

Theorem 22, we get an in-definite B(U?, λ?, µ?, ν?) and hence Theorem 22 cannot be applied.

Again, we use both the MATPOWER toolbox and the SDP dual relaxation approach to

compare with our result, but the situation is more interesting. First, the MATPOWER toolbox

yields a solution that coincides with our optimization dynamics approach. Secondly, the SDP

dual approach yields a different solution with cost $5771.95, which is less than our cost $5807.9.

When we check the strong duality conditions in Theorem 23, we find that they are not satisfied

either, because the matrix Aopt has a null space of dimension four.

We can numerically prove here that the set of bus voltages in Table 5.5 is indeed a globally

optimal solution and that $5807.9 is exactly the optimal cost for Example 6. Specifically, we

employ the MATLAB-based SOSTOOLS toolbox to numerically show that

P (U) = L(U, λ?, µ?, ν?)− L(U?, λ?, µ?, ν?) �SOS 0.

Then the global optimality follows from Lemma 6. Readers may refer to Ma and Elia (2014a) for

more details. When we go back to check the optimal cost computed by the SDP dual relaxation

approach, we find that it fails to maintain strong duality because 5807.9− 5771.95 > 0.

The counterexample 6 implies the following facts. First, when compared with the sufficient

conditions given in Lavaei and Low (2012), we conclude that strong duality holds for a larger

class of OPF problems. Secondly, the Lagrange dual to OPF problem (5.3a) – (5.3e) must be

stronger than the SDP dual relaxation (5.16a) – (5.16c). In fact, they are only equivalent to

each other under the conditions of Theorem 24. Finally, the optimization dynamics approach

proposed in this work can find global OPF solutions under more general conditions.

5.5 Convergence Analysis

This section provides a convergence analysis for optimization dynamics (5.6a) – (5.6h). We

show that a saddle-point for the Lagrangian (5.4) is locally asymptotically stable with respect

to dynamics (5.6a) – (5.6h) if the conditions of Theorem 24 hold. Specifically, we would like to

apply the general convergence result in Theorem 10 to the dynamical system (5.6a) – (5.6h).
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To begin with, we notice that the Hessian of the Lagrangian (5.4) with respect to U and

evaluated at (U?, λ?, γ?, µ?, ν?) is given by

H? := 2B(U?, λ?, γ?, µ?, ν?) + 8C(U?, ν?) + 2en+1e
T
n+1 (5.18)

where we define

C(U?, ν?) :=
∑
l∈G

cl2YlU
?U?TYl +

∑
(k,l)∈L

ν?kl

(
YklU

?U?TYkl + YklU
?U?TYkl

)
� 0.

Our next lemma characterizes the positive definiteness of H?.

Lemma 7. Suppose that the conditions of Theorem 24 hold. Then H? is positive definite.

Proof of Lemma 7. Under the conditions of Theorem 24, the matrix B(U?, λ?, γ?, µ?, ν?) � 0

is equivalent to the Aopt matrix yielded by the SDP dual relaxation approach, which has a

two-dimensional null space. Then the set
{
U?, U

?}
must be a basis of this null space, because

(i) B(U?, λ?, γ?, µ?, ν?)U? = 0 and (ii) B(U?, λ?, γ?, µ?, ν?)U
?

= 0, where (ii) follows from the

second statement of Lemma 3.

To prove that H? is positive definite, we need to show xTH?x > 0 for all non-zero x ∈ R2n.

First of all, given any x 6= 0 which does not lie in the null space of B(U?, λ?, γ?, µ?, ν?), we

have xTB(U?, λ?, γ?, µ?, ν?)x > 0. Because both matrices C(U?, ν?) and en+1e
T
n+1 are positive

semi-definite, we must have xTH?x > 0.

Next, we consider the vectors in the null space of B(U?, λ?, γ?, µ?, ν?). If we choose x =

U? 6= 0, then we have

U?TH?U? = 8U?TC(U?, ν?)U? > 0 (5.19)

where we have applied Assumption 4, saying that at least for one generator bus l ∈ G

cl2
(
UTYlU

)2
= cl2

(
P gl − P

d
l

)2
> 0.

On the other hand, if we choose x = U
? 6= 0, then we have

U
?T

H?U
?

= 2U
?T (

en+1e
T
n+1

)
U
?

= 2(V min
1 )2 > 0 (5.20)
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since we require V min
k > 0 for all bus k ∈ G. We need to mention that neither inequality (5.19)

nor (5.20) is a purely mathematical derivation. In contrast, they are both obtained from the

physical conditions and requirements for OPF problems. According to the discussions above

we conclude that H? � 0. This completes the proof.

Combining Lemma 7 and Theorem 10 yields the final result of this chapter, which presents

the locally asymptotic stability of optimization dynamics (5.6a) – (5.6h).

Theorem 25. Suppose that the conditions of Theorem 24 hold. Also suppose that equilibrium

(U?, λ?, γ?, µ?, ν?) is a strictly complementary saddle-point for the Lagrangian (5.4) and U? is

regular. Then there is a small neighborhood around (U?, λ?, γ?, µ?, ν?) such that

• Optimization dynamics (5.6a) – (5.6h) has a unique solution within this neighborhood;

• Any trajectory within this neighborhood converges to (U?, λ?, γ?, µ?, ν?) asymptotically.

Proof of Theorem 25. Applying Lemma 7 to Theorem 10 proves Theorem 25.

5.6 Simulation Results

This section verifies by simulations the effectiveness of the continuous-time optimization

dynamics approach for solving large-scale OPF problems. We do not study how to discretize

our algorithm at present. In contrast, we just use simulation results to describe the evolution

and convergence of our optimization dynamics, as if it were physically implemented. We will

discuss in details about digital implementations of the optimization dynamics in Chapter 6.

Now we apply the optimization dynamics approach to solve OPF problems over the IEEE

14-, 57-, and 118-bus benchmark systems. All these OPF problems include active and reactive

power demand constraints, voltage magnitude limits at all buses, as well as line-flow limits on

all transmission lines. All system parameters and problem data used here are extracted from

the archives of the MATPOWER toolbox. To obtain a faster convergence, we choose a large

scaling constant α = 100.

We employ the Matlab ODE solver ode15s to run our simulations. Simulation results show

that the optimization dynamics converges to saddle-points within 5 seconds (simulation time)
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for all IEEE benchmark systems above. Here, we only plot below in Fig. 5.7 the trajectories of

the IEEE 57-bus OPF test case. We can see that the proposed optimization dynamics approach

works well, even although the IEEE 57-bus network is known as a sensitive test case.

Remark 10. Although we have only shown the locally asymptotic stability of the saddle-point

for the Lagrangian associated with the OPF problem, from simulations we can see that its

domain of attraction is quite large.
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Figure 5.7 Convergence of the IEEE 57-bus OPF test case

5.7 Summary

In this chapter, we have applied the continuous-time optimization dynamics approach for

solving optimal power flow problems. The proposed optimization dynamics has fully exploited

a distributed OPF structure at the bus level, and hence is suitable for the physical settings

of power networks. We have derived a sufficient condition that characterizes the saddle-point

for the Lagrangian associated with the OPF problem. Under mild conditions, we have proved

the locally asymptotic stability of the saddle-point with respect to the optimization dynamics.

Besides, we have discovered that our optimization dynamics approach has a wider applicability

than the existing SDP dual relaxation approach. Future research will focus on how to merge

the proposed continuous-time OPF solution within the physical layer of power networks.
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CHAPTER 6. SOLVERS FOR THE OPTIMIZATION DYNAMICS

This chapter discusses about discrete-time implementations of our optimization dynamics.

Knowing from the convergence analysis in Chapter 3 that optimization dynamics (3.1a) – (3.1c)

is locally asymptotically stable under mild conditions, we naturally ask: How to seek a stable

KKT equilibrium by dynamics (3.1a) – (3.1c) in a distributed and efficient way?

Because (3.1a) – (3.1c) is a continuous-time dynamical system, one possible method is to

implement it via analog computing. Analog computation best maintains the distributedness of

the optimization dynamics, and hence it is an ideal method to meet our purposes. Aside from

analog computation, we are still curious about whether we can search stable KKT equilibrium

points by distributed, discrete-time implementations.

There are two different discretized methods to seek the stable KKT equilibrium. The first

choice is to solve dynamics (3.1a) – (3.1c) directly via the ordinary differential equation (ODE)

solvers (e.g., MATLAB ode45 or ode15s), and we can obtain a stable KKT equilibrium after

the dynamical system converges. Alternatively, we may set dynamics (3.1a) – (3.1c) equal to

zero and compute an equilibrium from those equations, say, via the Newton-Raphson method.

The latter transforms solving ODEs into solving a set of non-linear equations, so it costs

less. However, due to the possible existence of multiple KKT points for non-convex problems,

this method highly relies on our initial conditions. If, unluckily, we feed the non-linear equation

solver with an initial condition which is far from the stable KKT equilibrium, then the non-linear

equation solver may yield an unstable KKT solution or even may not converge to anywhere.

On the other hand, if we directly solve dynamics (3.1a) – (3.1c) using the ODE solvers, we

need to be careful for choosing the ODE solvers. Generally speaking, explicit ODE solvers are

good choices for non-stiff dynamical systems, whereas implicit ODE solvers perform better to

deal with stiff dynamical systems.
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From our simulations, for instance, we discover that those optimization dynamical systems

associated with phase recovery problems are non-stiff systems; but, in contrast, for most OPF

problems their associated optimization dynamical systems are stiff systems.

This numerical issue of stiffness leads us to the following dilemma: If we employ an explicit

ODE solver (e.g., ode45) that maintains the distributed structure of the optimization dynamics,

we usually need a tiny step size to guarantee the convergence of the optimization dynamical

system. Hence, it will take a long time for simulation. If we prefer a faster simulation, we should

choose those implicit ODE solvers (e.g., ode15s), which, however, may destroy the distributed

structure of the optimization dynamics since they require matrix inversions in their algorithms.

To deal with the dilemma above, we write an implicit ODE solver by ourselves for dynamics

(3.1a) – (3.1c) in this chapter. To be specific, we adopt the implicit ODE algorithm and make

the solver more robust to large step sizes. Meanwhile, instead of direct matrix inversions, we

apply several distributed, iterative methods for solving linear equations.

After different trials to apply digital solvers for our optimization dynamics, the contribution

of this chapter is the discovery of limitations in passing from continuous-time to discrete-time

computing approaches. Specifically, if we prefer to digitally solve an ODE with high accuracy

and efficiency, then we should employ higher-order explicit or implicit ODE solvers. However,

these solvers will usually destroy the distributed structure of the original ODE. On the other

hand, if we prefer to best maintain the original ODE’s distributed structure, then we should

choose the first-order explicit method but with low accuracy and efficiency.

In Section 6.1, we briefly introduce those explicit ODE solvers. We show that the first-order

Euler solver best maintains the distributed structure of our optimization dynamics, while all

higher-order solvers destroy the distributed structure somehow because they need to use the

network multiple times at each update. Then Section 6.2 applies the explicit Euler’s method

to solve the optimization dynamics associated with phase recovery problems. In Section 6.3,

we write a backward Euler ODE solver for stiff dynamical systems. To maintain a distributed

computing structure, we also utilize several iterative algorithms to compute solutions to linear

systems. Section 6.4 presents simulation results to show that our backward Euler ODE solver

can be successfully applied to seek global OPF solutions.
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6.1 Explicit ODE Solvers

Let us consider the dynamical system in a general form

ẋ = f(x) (6.1)

where x ∈ Rn and f : Rn → Rn is a continuously differentiable function. We assume that given

any initial condition x0 ∈ Rn, there is a unique solution to dynamical system (6.1).

If dynamics (6.1) is non-stiff, then we can apply explicit ODE methods to solve it. These

methods include the Euler method (first-order), bilinear method (second-order), Runge-Kutta

method (fourth-order), and etc. In general, the higher order an explicit ODE solver has, the

more accurate it will be.

Next we start our presentation from the simplest one, the so-called explicit Euler method.

Suppose that we discretize dynamics (6.1) with a step size T and that we use xk ∈ Rn to denote

the evaluation of x(t) at time instant t = kT . Then the explicit Euler method updates the

state variable x according to the following rule

xk+1 := xk + Tf(xk). (6.2)

From (6.2) we can see that we only need xk and the given step size T to compute xk+1. Since

xk and T are both known, so we call this update rule as an explicit method. Moreover, we just

evaluate the vector field f(·) once in each update step.

When the optimization dynamics (3.1a) – (3.1c) is non-stiff, we can easily apply algorithm

(6.2) to solve it. Furthermore, if optimization (2.4a) – (2.4c) is defined over a network and

its associated optimization dynamics (3.1a) – (3.1c) has a distributed computation structure,

then the evaluation of the vector field does not destruct it at all. Also because we just evaluate

the vector field once, we only use the network once in each update. Therefore, algorithm (6.2)

maintains the distributed computation structure.

In comparison, those higher order explicit ODE solvers require to evaluate the vector field

several times in each update. We will employ the second-order bilinear method to illustrate

this point. The explicit bilinear method updates the state variable x according to

xk+1 := xk +
T

2
f(xk) +

T

2
f
{
xk + Tf(xk)

}
(6.3)
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where we can easily see that vector field f(·) is evaluated twice. Consequently, if the associated

optimization problem (2.4a) – (2.4c) is defined over a network, then we have to use the network

twice in each update by implementing the explicit bilinear method. This multiple use of the

network finally impairs the original distributed computation structure. After our comparison,

we conclude that the explicit Euler method maintains the distributed computation structure

best among all explicit ODE algorithms.

6.2 Simulations for Phase Recovery Problems

In this section we apply the explicit Euler method (6.2) to solve the optimization dynamics

(4.30a) – (4.30b) associated with phase recovery problem (4.27a) – (4.27b). The explicit Euler

method works here because we find that dynamical system (4.30a) – (4.30b) is non-stiff.

Here we define the size of the complex-valued signal x as n = 128K with m = 3dn log(n)e

measurements, whereK = 1, 2, 4, 8, 16 respectively and d·e represents the ceiling function. Then

the coefficient matrix A ∈ Cm×n is chosen as a random Gaussian matrix with an appropriate

size. According to Theorem 18, it is highly probable that relaxation (4.26a) – (4.26c) is exact.

We run twenty experiments in total for each constant integer K. In each experiment, we

first employ the fast algorithm proposed by Netrapalli et al. (2015) to solve the phase recovery

problem (4.27a) – (4.27b). In Netrapalli et al. (2015), the authors have invented a fast phase

retrieval algorithm by alternating minimizations. Starting from a carefully chosen initial point,

this algorithm converges to the phase recovery solution with a fast speed. Then we apply the

explicit Euler method starting from random initial conditions to seek a saddle-point equilibrium

for optimization dynamics (4.30a) – (4.30b), and finally we compare the average performances

between these two approaches.

We notice that the coefficient matrices in the phase recovery problem are not sparse, and

hence optimization dynamics (4.30a) – (4.30b) does not possess a distributed structure. In our

simulations, we fix the step size as T = 10−5s and, moreover, we choose the stopping criterion

as ε = 10−4 for the explicit Euler method.

Our comparison between these two approaches is plotted in Fig. 6.1. We see that for small

size phase recovery problems (K ≤ 6) the fast alternating minimization algorithm proposed
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Figure 6.1 A performance comparison between our explicit Euler method and the fast phase

retrieval approach proposed by Netrapalli et al. (2015)

by Netrapalli et al. (2015) is faster than our approach. However, when the problem size grows

large, the algorithm proposed by Netrapalli et al. (2015) requires to spend more time finding

the phase recovery solution. Actually, the fast phase recovery algorithm proposed in Netrapalli

et al. (2015) spends some time for its initialization step as the problem size grows large, but in

contrast, our algorithm does not have any special requirements for initial conditions.

6.3 The Backward Euler ODE Solver

6.3.1 The Backward Euler’s Method

Different from what we have done in the last section, now we start to develop an implicit

ODE solver for dynamics (3.1a) – (3.1b) in case it is a stiff system. As mentioned earlier, we

find that the optimization dynamical systems associated with OPF problems are stiff systems

and, therefore, explicit ODE solvers are not appropriate for them.

Let us reconsider the general dynamical system (6.1). To implicitly compute an integration

for dynamics (6.1), we choose the backward Euler’s method for the state update

xk+1 := f(xk) + Tf(xk+1) (6.4)
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which gives a system of non-linear equations involving xk+1. Next we can apply the iterative,

Newton-Raphson method to solve the state update xk+1 from (6.4).

We may rewrite equation (6.4) as

Tf(xk+1)− xk+1 + f(xk) = 0 (6.5)

and we apply the Newton-Raphson method to solve the non-linear equation (6.5).

Let the following infinite series

{
xk+1

1 , xk+1
2 , · · ·

}
→ xk+1

denote the state solutions yielded by the Newton-Raphson algorithm. Also suppose that at the

(i + 1)-th Newton-Raphson iteration (i ≥ 1) for time instant t = kT , both xk and xk+1
i are

known to us. Then we make an update xk+1
i+1 according to the following rules

Fi := Tf(xk+1
i )− xk+1

i + xk (6.6)

Hi :=
∂f(x)

∂x

∣∣∣∣
x=xk+1

i

(6.7)

xk+1
i+1 := xk+1

i − (THi − In)−1Fi (6.8)

where In in (6.8) denotes the n × n identity matrix. We repeat procedures (6.6) – (6.8) until∥∥∥xk+1
i+1 − x

k+1
i

∥∥∥ is less than some given tolerance ε. At that time, we believe that the infinite

series
{
xk+1

1 , xk+1
2 , · · ·

}
has already converged to xk+1.

We would like to point out that the backward Euler’s method is robust to large step sizes.

For example, if dynamics (6.1) is of the form ẋ = Ax (linear system) with A Hurwitz, i.e., all

eigenvalues of A are strictly on the left half plane, then the backward Euler is unconditionally

stable, no matter how large the step size T we take, see Butcher (2008).

Applying (6.4) and (6.6) – (6.8) to the dynamical system (3.1a) – (3.1c), we can write a

discretized solver for dynamics (3.1a) – (3.1c), as shown in Algorithm 1.

Algorithm 1 in fact contains two loops, including an outer loop (steps 1 – 4) and an inner

loop (steps 2.1 – 2.7). Specifically, the inner loop updates the state according to the backward

Euler’s method, whereas the outer loop checks when the optimization dynamics converges.
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Note that both steps 2.2 and 2.6 in Algorithm 1 are special for the optimization dynamical

system (3.1a) – (3.1c), because dynamics (3.1b) employs the positive projection to keep each

Lagrange multiplier associated with inequality constraint (2.4b) from leaving the non-negative

orthant. To be specific, step 2.2 implements the positive projection on the evaluation of the

vector field (3.1b) at each backward Euler iteration, and step 2.6 guarantees no updates for

those Lagrange multipliers whose positive projections are active.

Algorithm 1 A backward Euler ODE solver for optimization dynamics (3.1a) – (3.1c)

given initial conditions x0 ∈ Rn, λ0 ∈ Rp+, and ν0 ∈ Rq, an error tolerance ε > 0, and

a step size T > 0, initialize k ← 0

repeat

1 assign (xk+1, λk+1, νk+1)← (xk, λk, νk)

2 repeat

2.1 evaluate the vector field (3.1a) – (3.1c) at (xk+1, λk+1, νk+1) without projections

and assign this evaluation to f

2.2 for all i such that 1 ≤ i ≤ p check

if fn+i ≤ 0 and λk+1
i ≤ 0

then fn+i ← 0 and λk+1
i ← 0

end for

2.3 compute F ← Tf − (xk+1, λk+1, νk+1) + (xk, λk, νk)

2.4 evaluate the Jacobian of (3.1a) – (3.1c) at (xk+1, λk+1, νk+1) without projections

and assign this evaluation to H

2.5 compute D ← (TH − In+p+q)
−1F

2.6 for all i such that 1 ≤ i ≤ p check

if fn+i = 0 and λk+1
i = 0

then Dn+i ← 0

end for

2.7 update (xk+1, λk+1, νk+1)← (xk+1, λk+1, νk+1)−D

quit until the stopping criterion ‖D‖ ≤ ε is satisfied

3 evaluate E ← (xk+1, λk+1, νk+1)− (xk, λk, νk)

4 update k ← k + 1

quit until the stopping criterion ‖E‖ ≤ ε is satisfied
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6.3.2 Centralized Computing

In Algorithm 1, step 2.5 needs to solve a system of linear equations (TH − In+p+q)D = F .

Generally speaking, we have two ways to solve linear equations: We can either invert a matrix

directly, or approximate the matrix inversion by an infinite number of iterations. We note that

the former definitely requires a centralized computing, whereas the latter is more amenable to

be implemented in a distributed manner. In this subsection, we discuss about the centralized

computing first.

Assumption 5. In what follows, we assume that matrix (TH − In+p+q) is invertible.

Notice that the Jacobian H of dynamics (3.1a) – (3.1c) can be generally expressed as

H =

−B −C

CT 0


where B ∈ Sn and C ∈ Rn×(p+q). Hence we have

TH − In+p+q = −

In + TB TC

−TC Ip+q

 . (6.9)

Due to the special structure of (TH − In+p+q), we can reduce the computational complexity

for inverting this matrix. If we further assume that (In + TB) is invertible, then applying the

matrix inversion lemmaA B

C D


−1

=

 (
A−BD−1C

)−1 −A−1B
(
D − CA−1B

)−1

−
(
D − CA−1B

)−1
CA−1

(
D − CA−1B

)−1

 (6.10)

to matrix (6.9) yields the following result

(TH − In+p+q)
−1 = −

 Q−1 −TP−1CR

TRCTP−1 R

 (6.11)

where the blocks in (6.11) are respectively defined by

P := In + TB (6.12a)

Q := In + TB + T 2CCT (6.12b)

R := Ip+q − T 2CTQ−1C. (6.12c)



www.manaraa.com

94

Because we have assumed that P = In + TB is invertible, the matrix Q = In + TB + T 2CCT

must be invertible, too. Thus, instead of computing the inversion of a (n+ p+ q)× (n+ p+ q)

matrix (TH− In+p+q), based on (6.11) and (6.12a) – (6.12c) now we only need to compute two

n× n matrix inversions for P and Q. When p+ q > n, equation (6.11) can greatly reduce the

computational complexity.

6.3.3 Distributed Computing

In order to maintain a distributed structure of Algorithm 1, we can try iterative methods

to compute the matrix inversion. In other words, we would like to replace the matrix inversion

step 2.5 by another loop procedure that iteratively solves (TH − In+p+q)D = F .

How to solve a system of linear equations in an iterative fashion is a well studied topic, and

numerous algorithms have been proposed up to now. We list below several candidate methods

that can be applied to Algorithm 1.

For the simplicity of presentation, consider a system of linear equations Au = b, where both

A ∈ Rn×n and b ∈ Rn are given, and u ∈ Rn is the unknown. We assume that A is invertible

so that Au = b has a unique solution u?.

Bertsekas and Tsitsiklis (1989) has introduced several classical methods, including the Ja-

cobi algorithm, the Gauss-Seidel algorithm, the conjugate gradient method, and etc. All of

these methods can be implemented in a distributed manner if the A matrix is sparse, and the

reader may refer to Bertsekas and Tsitsiklis (1989) for more details.

Let {u1, u2, · · · } be an infinite series that is generated by an iterative algorithm for solving

the linear equation Au = b. Different algorithms require different conditions on the A matrix,

in order to guarantee that the series {u1, u2, · · · } converges to the correct solution u?.

Convergence of the Jacobi algorithm requires that the A matrix should be row diagonally

dominant, that is, |aii| >
∑

j 6=i |aij |, for all i = 1, · · · , n. In comparison, both the conjugate

gradient method and the Gauss-Seidel method require that the A matrix should be symmetric

and positive definite. If the A matrix is not symmetric, then we can apply both algorithms

to solve the equivalent equation ATAu = AT b, where we must have ATA � 0 since we have

assumed that A is invertible.
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Besides those classical algorithms presented in Bertsekas and Tsitsiklis (1989), some new

iterative methods have also been developed recently. For example, Shental et al. (2008) has

proposed a Gaussian belief propagation algorithm for solving the linear equations, which allows

for a distributed message passing implementation. Similar to the Jacobi method, the Gaussian

belief propagation solver needs a diagonally dominant A matrix to guarantee its convergence.

Moreover, Mou et al. (2013) has developed a distributed linear equation solver via the

consensus scheme. Wang and Elia (2014) has equivalently transformed the problem of solving

linear equations into a linear equality constrained least square problem, and employed the

optimization dynamics to solve it. Both approaches are distributable, and neither of them has

a strict requirement on the coefficient matrix A.

6.4 Simulations for OPF Problems

This section presents simulations on searching saddle-point equilibria for the optimization

dynamics (5.6a) – (5.6h) associated with OPF problems via the backward Euler solver described

in Algorithm 1. We show that our implicit ODE algorithm works efficiently and effectively.

First of all, Lemma 7 in Chapter 5 has shown that the Hessian of the Lagrangian (5.4)

associated with OPF (5.3a) – (5.3e) is positive definite when evaluated at a saddle-point.

Since the Lagrangian associated with OPF problem (5.3a) – (5.3e) is a quartic polynomial in

the voltage variables and linear in the Lagrange multipliers, the Hessian of the Lagrangian (5.4)

must be continuous with respect to those variables. Moreover, by the continuity of eigenvalues

Horn and Johnson (1987), we know that eigenvalues of the Lagrangian’s Hessian should not

change too much within a small neighborhood of the OPF saddle-point.

Due to the locally asymptotic stability of the OPF saddle-point (Theorem 25), we are able

to find an initial condition for dynamics (5.6a) – (5.6h) within the OPF saddle-point’s domain

of attraction, so that the Lagrangian’s Hessian is always positive definite at every point along

the convergent trajectory of dynamics (5.6a) – (5.6h).

As mentioned before, the backward Euler ODE solver is unconditionally stable for a linear

system ẋ = Ax with matrix A Hurwitz. Based on our analysis above about the positive definite

Hessian of the Lagrangian (5.4), Lemma 1 tells us that the Jacobian associated with dynamics
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(5.6a) – (5.6h) must be Hurwitz in a small neighborhood of the OPF saddle-point. Therefore,

Algorithm 1 will be robust to large step sizes with a well chosen starting point.

Moreover, we notice that the Jacobian associated with dynamics (5.6a) – (5.6h) is sparse.

However, it is neither symmetric nor row diagonally dominant, so the Jacobi and the Gaussian

belief propagation methods cannot be applied to solve (5.6a) – (5.6h) via Algorithm 1. If we

would like to apply the conjugate gradient or the Gauss-Seidel method, then we need to solve

the equivalent linear equation (TH − In+p+q)
T (TH − In+p+q)D = (TH − In+p+q)

TF , where H

denotes the Jacobian associated with dynamics (5.6a) – (5.6h).

From those simulations for large-scale OPF problems (see the simulation section next), we

find that (TH − In+p+q)
T (TH − In+p+q) is still a sparse matrix and hence both the conjugate

gradient and the Gauss-Seidel algorithms are distributable. Nevertheless, these discrete-time

implementations will destroy to some extent the distributed OPF structure.

We have also attempted to utilize the approaches proposed in Mou et al. (2013) and Wang

and Elia (2014) to solve dynamics (5.6a) – (5.6h) via Algorithm 1. However, neither of them

works well. The drawback of Mou et al. (2013) is that it requires too much information change

during each iteration. As for Wang and Elia (2014), it suffers from the same numerical issue

of stiffness, and it usually takes a long time for simulating large-scale OPF problems.

Now we are ready to report our simulations results for large-scale OPF problems. We make

comparisons with standard MATLAB solvers, such as ode15s and CVX. All simulations provided

below are carried out using the 2.4GHz Intel Core i5 processor with a 4GB RAM.

We consider the IEEE 14-bus benchmark system. This 14-bus power network example is

taken from the IEEE test case archive and uses a 100 MVA base. All system data are extracted

from the library of the MATPOWER toolbox, see Zimmerman et al. (2011).

In the 14-bus system, buses 1, 2, 3, 6, and 8 are generators. All power demands are shown

in Table 6.1. The coefficients of the quadratic generation costs as well as the generation limits

are given in Table 6.2. Finally, all voltage magnitudes are constrained from 0.94 to 1.06 PU.

It has been shown in Lavaei and Low (2012) that strong duality holds for the IEEE 14-bus

benchmark system. In other words, there exists a saddle-point for the dynamics (5.6a) – (5.6h)

and hence our optimization dynamics approach applies.
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We first use MATLAB ODE solvers ode45 and ode15s to simulate dynamics (5.6a) – (5.6h).

Here, we pick the default accuracy parameter RelTol = 10−3. We will start at the initial point

at all ones and simulate the dynamics for 64 seconds.

The optimization dynamics (5.6a) – (5.6h) associated with the 14-bus OPF example contains

112 variables in total, including 28 voltage variables as well as 84 Lagrange multipliers. It costs

ode45 more than 30 minutes (CPU time) to finish the simulation. In comparison, the ode15s

solver spends 2.5 minutes for the simulation, as is shown in Fig. 6.2. Obviously, simulating a

stiff dynamical system requires a long time.

Then we use our backward Euler solver (Algorithm 1) to simulate dynamics (5.6a) – (5.6h).

To get a fair comparison, we start at the same initial point with the same tolerance and simulate

for the same long time. We fix the step size T = 2s to achieve a faster simulation.

The simulation obtained from our own solver is plotted in Fig. 6.3. When represented in

the standard polar coordinates, the globally optimal voltages are given in Table 6.3. They are

identical to those solved by ode15s.

Comparing Fig. 6.2 with Fig. 6.3, we may discover that in the former figure trajectories of

dynamics (5.6a) – (5.6h) have experienced a period of oscillation before convergence. This is

also the true simulation, and MATLAB ODE solvers have spent a lot of time for computing

this oscillation part before yielding the global OPF solution.

When the same dynamics is solved by our own ODE solver, because we have used a quite

large step size, our simulation smooths that oscillation and converges to the same saddle-point

with a faster speed. Such a distortion of the simulation does not matter too much, since we

only care about the final value of the saddle-point rather than those trajectories.

The performances of our solvers for simulating the 14-bus OPF example are listed in Table

6.4. If we employ direct matrix inversions, then it takes 331 iterations with the shortest CPU

time 0.45s to finish the simulation. When we use the conjugate gradient or the Gauss-Seidel

method instead, it seems that the Gauss-Seidel method costs more than the conjugate gradient

one. It requires 1, 042, 173 iterations and spends 9.95s.
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Table 6.1 Power demands of the IEEE 14-bus OPF

P d1 + iQd1 P d2 + iQd2 P d3 + iQd3 P d4 + iQd4 P d5 + iQd5 P d6 + iQd6 P d7 + iQd7

0 + i0 21.7 + i12.7 94.2 + i19 47.8− i3.9 7.6 + i1.6 11.2 + i7.5 0 + i0

P d8 + iQd8 P d9 + iQd9 P d10 + iQd10 P d11 + iQd11 P d12 + iQd12 P d13 + iQd13 P d14 + iQd14

0 + i0 29.5 + i16.6 9 + i5.8 3.5 + i1.8 6.1 + i1.6 13.5 + i5.8 14.9 + i5

Table 6.2 Generation costs and constraints of the IEEE 14-bus OPF

Generators cl2 cl1 cl0 Pmin
l Pmax

l Qmin
l Qmax

l

l = 1 $0.043 per MWh2 $20 per MWh $0 0 332.4 0 10

l = 2 $0.25 per MWh2 $20 per MWh $0 0 140 −40 50

l = 3 $0.01 per MWh2 $40 per MWh $0 0 100 0 40

l = 6 $0.01 per MWh2 $40 per MWh $0 0 100 −6 24

l = 8 $0.01 per MWh2 $40 per MWh $0 0 100 −6 24

Table 6.3 A global solution to the IEEE 14-bus OPF

V ?
1 V ?

2 V ?
3 V ?

4 V ?
5 V ?

6 V ?
7

1.06∠0.0◦ 1.04∠−4.0◦ 1.02∠−9.9◦ 1.01∠−8.7◦ 1.02∠−7.4◦ 1.06∠−12.7◦ 1.05∠−11.2◦

V ?
8 V ?

9 V ?
10 V ?

11 V ?
12 V ?

13 V ?
14

1.06∠−10.4◦ 1.04∠−13.0◦ 1.04∠−13.2◦ 1.05∠−13.1◦ 1.05∠−13.5◦ 1.04∠−13.6◦ 1.02∠−14.3◦

Table 6.4 Performance Comparisons on the IEEE 14-bus OPF

ode15s CVX Backward Euler Backward Euler Backward Euler

(Centralized) (Conjugate Gradient) (Gauss-Seidel)

Iterations —— 27 331 45, 547 1, 042, 173

CPU Time 2.5min 3.03s 0.45s 1.28s 9.95s
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Figure 6.2 The IEEE 14-bus OPF solved by MATLAB ODE solver ode15s
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Figure 6.3 The IEEE 14-bus OPF solved by our ODE solver with step size T = 2s

Furthermore, we also employ the convex optimization software CVX to solve the SDP dual

relaxation associated with the IEEE 14-bus OPF example. Of course, this SDP dual relaxation

is solved in a centralized manner. We notice that the CVX software takes 27 iterations and about

3.03s to finish the computation. When compared with our centralized backward Euler solver,

we find that our solver is much faster since it only spends 0.45s to yield the OPF solution.

From the above OPF example we summarize two points. Firstly, the solver which employs

the conjugate gradient or the Gauss-Seidel method requires to use the network multiple times in

each backward Euler iteration, so the intrinsic distributed OPF structure is somehow destroyed

and the computation speed is slow. Secondly, it suggests that our centralized backward Euler

solver is faster than the CVX software solving associated SDP dual relaxations.
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6.5 Summary

This chapter has developed numerical ODE solvers for our continuous-time optimization

dynamics approach. We have first applied explicit Euler method to the optimization dynamics

associated with phase recovery problems. The explicit Euler method not only performs very fast

but also best maintains the distributed computation structure. Next, based on the backward

Euler’s method and iterative matrix inversions, we have successfully written an implicit Euler

solver for the optimization dynamical systems associated with large-scale OPF problems.

When implemented in a centralized manner, simulations show that our implicit solver is

faster than the MATLAB ODE solver ode15s. When implemented with those iterative matrix

inversion algorithms, on the other hand, we have noticed that our implicit solver still maintains

a distributed computation structure, but at the expense of using the network multiple times

for each backward Euler iteration.

Although the discretization methods for ODEs presented in this chapter are rudimentary,

our simulation results are promising for both of the phase recovery and OPF problems. At the

same time, these simulations help us reveal some limitations in transforming continuous-time

computing approaches into discrete-time algorithms.
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CHAPTER 7. OPF PROBLEMS REVISITED: A CONSENSUS-BASED

DECOMPOSED SDP RELAXATION APPROACH

We would like to revisit the non-convex OPF problems in this chapter. As mentioned in

Chapter 5, for many cases OPF problems can be convexified and hence be efficiently solved by

the SDP relaxation approach. However, one major drawback of the standard SDP relaxation

lies in the problem size, which does not scale nicely as the size of the power network expands.

As a consequence, the SDP relaxations are cumbersome when applied to large-scale problems.

Recent works Molzahn et al. (2013) and Madani et al. (2015) have given new algorithms

to address the issue above. Using recent technologies derived in the matrix completion theory,

Molzahn et al. (2013) has developed a matrix combination algorithm that shortens the OPF

solver’s computation time. By the same matrix completion technologies, Madani et al. (2015)

has designed a fast OPF solver based on the so-called “tree decomposition” for power networks.

Different from those works, in this chapter we continue to exploit the natural sparsity of

power networks to obtain a distributed and efficient OPF solution. Specifically, we decompose

the standard SDP relaxation into a bunch of smaller size SDPs. Then each bus in the power

network should locally solve its own decomposed SDP relaxation and meanwhile a global OPF

solution can be achieved by running a consensus over the whole power network.

We can show that the size of our decomposed SDP relaxation scales linearly as the power

network expands and hence it greatly fastens the OPF computation speed. When compared

with Molzahn et al. (2013) and Madani et al. (2015), the decomposed SDP relaxation approach

is even faster for large-scale OPF problems.

In Section 7.1, we briefly review the SDP relaxations for OPF problems. Then we formulate

the decomposed OPF in Section 7.2 and present the decomposed SDP relaxation approach in

Section 7.3. Discussions and simulations are, respectively, provided in Sections 7.4 and 7.5.
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7.1 Review of the SDP Relaxation

Recall from Chapter 5 that an OPF problem can be formulated as

minimize
U∈R2n

∑
l∈G

fl(U
TYlU + P dl ) (7.1a)

subject to

Pmin
k − P dk ≤ UTYkU ≤ Pmax

k − P dk ∀k ∈ N (7.1b)

Qmin
k −Qdk ≤ UTYkU ≤ Qmax

k −Qdk ∀k ∈ N (7.1c)

(V min
k )2 ≤ UTMkU ≤ (V max

k )2 ∀k ∈ N (7.1d)

(UTYklU)2 + (UTYklU)2 ≤ (Smax
kl )2 ∀(k, l) ∈ L (7.1e)

Un+1 = 0 (7.1f)

where we have imposed a new constraint (7.1f) to select bus 1 as the reference bus. Then, by

changing all quadratic terms UTYU in (7.1a) – (7.1e) into Tr{YW} with W = UUT , problem

(7.1a) – (7.1f) can be equivalently rewritten as an epigraph form

minimize
α, W

∑
l∈G

αl (7.2a)

subject to

Pmin
k − P dk ≤ Tr{YkW} ≤ Pmax

k − P dk ∀k ∈ N (7.2b)

Qmin
k −Qdk ≤ Tr{YkW} ≤ Qmax

k −Qdk ∀k ∈ N (7.2c)

(V min
k )2 ≤ Tr{MkW} ≤ (V max

k )2 ∀k ∈ N (7.2d)

Lkl � 0 ∀(k, l) ∈ L (7.2e)

Cl � 0 ∀l ∈ G (7.2f)

W � 0 (7.2g)

Wz = 0 (7.2h)

rank(W ) = 1 (7.2i)

where matrices Lkl and Cl, for all (k, l) ∈ L and l ∈ G, have been defined in Section 5.4. In

constraint (7.2h), moreover, z ∈ R2n is a vector of all zeros except the (n+ 1)-th entry is one.
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OPF formulations (7.1a) – (7.1f) and (7.2a) – (7.2i) are equivalent non-convex problems.

We also notice that the rank-one constraint (7.2i) is the only non-convex constraint in OPF

problem (7.2a) – (7.2i). We could drop constraint (7.2i) and thus (7.2a) – (7.2h) becomes a

convex SDP relaxation for OPF problem (7.1a) – (7.1f). If we solve (7.2a) – (7.2h) and obtain

a rank-one solution, then we can recover an optimal U? for OPF problem (7.1a) – (7.1f) with

bus 1 as the reference.

Although SDP relaxation (7.2a) – (7.2h) is convex, it has one obvious drawback that the

problem size grows in n2 when the power network size expands, because the decision variable

W is a 2n× 2n symmetric matrix. This will certainly slow down the computation speed when

it is applied to large-scale OPF problems.

To overcome this drawback, we propose a decomposed SDP relaxation approach for OPF

problems. Our approach assigns each bus in the power network to solve a local, smaller SDP

relaxation, whose problem size grows linearly with the number of neighboring buses, and at

the same time all buses in the power network coordinate with each other to obtain the global

OPF solution via a consensus scheme.

7.2 The Decomposed OPF Problem

Let us start our derivation from OPF problem (7.1a) – (7.1f). To begin with, we need to

assign each bus with its own local voltage variables. Recall that in problem (7.1a) – (7.1f), the

only optimization variable is a 2n-dimensional, real voltage vector

U :=
[
U1 · · ·Un Un+1 · · ·U2n

]T
with its first n elements U1, · · · , Un being the real parts of the corresponding complex-valued

bus voltages and its last n elements Un+1, · · · , U2n being the corresponding imaginary parts.

Now we ask each bus in the power network to duplicate a copy of U for itself. The duplicated

voltage vector associated with bus k is denoted by

U
k

:=
[
Uk1 · · ·Ukn Ukn+1 · · ·Uk2n

]T
∈ R2n.

Further, for each bus k, we define the local voltage variable Uk ∈ R2(|N (k)|+1) by deleting the

elements Ukj and Ukn+j from U
k
, for all indices j 6= k and j /∈ N (k).
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For each transmission line (k, l) ∈ L that connects bus k and bus l (k < l), we define

U (k,l) :=
[
Ukk U

k
l U

k
n+k U

k
n+l

]T
∈ R4

using the elements from Uk. Moreover, because the power network considered in this work is

modeled as a undirected graph, we know that (l, k) ∈ L, too. However, this time we use the

elements from U l to define

U (l,k) :=
[
U lk U

l
l U

l
n+k U

l
n+l

]T
∈ R4.

Of course, vectors U (k,l) and U (l,k) are two different local voltage variables that respectively

belong to bus k and bus l.

To make the above definitions clear, let us give a simple example below illustrating how to

assign these local voltage variables to each bus in the power network.

Example 7. Let us reconsider the four-bus power network as shown in Fig. 5.2. This network

topologically has a tree structure, and each bus has at most two neighboring buses. Following

the definitions above, we can assign the local voltage variables for each bus as

Bus 1:

U1 =
[
U1

1 U1
2 U1

4 U1
5 U1

6 U1
8

]T
, U (1,2) =

[
U1

1 U1
2 U1

5 U1
6

]T
, U (1,4) =

[
U1

1 U1
4 U1

5 U1
8

]T
Bus 2:

U2 =
[
U2

1 U2
2 U2

3 U2
5 U2

6 U2
7

]T
, U (2,1) =

[
U2

1 U2
2 U2

5 U2
6

]T
, U (2,3) =

[
U2

2 U2
3 U2

6 U2
7

]T
Bus 3:

U3 =
[
U3

2 U3
3 U3

6 U3
7

]T
, U (3,2) =

[
U3

2 U3
3 U3

6 U3
7

]T
Bus 4:

U4 =
[
U4

1 U4
4 U4

5 U4
8

]T
, U (4,1) =

[
U4

1 U4
4 U4

5 U4
8

]T
.

We next focus on the sparsity of coefficient matrices Yk, Yk, Mk, Ykl, and Ykl. According

to Lemma 5, we know that these matrices have a bunch of zero rows and columns. Hence, by

deleting the corresponding zero rows and columns from Yk, Yk, Mk, Ykl, and Ykl, we obtain
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a series of new coefficient matrices YD
k , Y

D
k , MD

k , YD
kl, and Y

D
kl such that

UTYkU =
(
Uk
)T

YD
k U

k ∀k ∈ N (7.3a)

UTYkU =
(
Uk
)T

Y
D
k U

k ∀k ∈ N (7.3b)

UTMkU =
(
Uk
)T

MD
k U

k ∀k ∈ N (7.3c)

UTYklU =
[
U (k,l)

]T
YD
klU

(k,l) ∀(k, l) ∈ L (7.3d)

UTYklU =
[
U (k,l)

]T
Y
D
klU

(k,l) ∀(k, l) ∈ L. (7.3e)

Then using equations (7.3a) – (7.3e), we can formulate the decomposed OPF problem as

minimize
Uk, ∀k∈N

∑
l∈G

fl

[(
U l
)T

YD
l U

l + P dl

]
(7.4a)

subject to

Pmin
k − P dk ≤

(
Uk
)T

YD
k U

k ≤ Pmax
k − P dk ∀k ∈ N (7.4b)

Qmin
k −Qdk ≤

(
Uk
)T

Y
D
k U

k ≤ Qmax
k −Qdk ∀k ∈ N (7.4c)

(V min
k )2 ≤

(
Uk
)T

MD
k U

k ≤ (V max
k )2 ∀k ∈ N (7.4d){[

U (k,l)
]T

YD
klU

(k,l)
}2

+
{[
U (k,l)

]T
Y
D
klU

(k,l)
}2
≤ (Smax

kl )2 ∀(k, l) ∈ L (7.4e)

U1
n+1 = 0 (7.4f)

U (k,l) = U (l,k) ∀(k, l) ∈ L. (7.4g)

Note that, in the above OPF problem, the cost and constraints (7.4a) – (7.4f) are all equivalent

to (7.1a) – (7.1f). Because we have decoupled OPF problem (7.1a) – (7.1f) by duplicating the

voltage variables, we require an extra constraint (7.4g) to reach a consensus on voltages over

all neighboring buses.

Theorem 26. The decomposed OPF problem (7.4a) – (7.4g) is equivalent to OPF problem

(7.1a) – (7.1f).

Proof of Theorem 26. First suppose that U? is an optimal solution to problem (7.1a) – (7.1f).

Following the duplications presented before, we can always construct a series of
(
Uk
)?

, ∀k ∈ N ,

as a solution to problem (7.4a) – (7.4g). Thus, the optimal cost of (7.4a) – (7.4g) is no more

than that of (7.1a) – (7.1f).
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On the other hand, if we get a series of
(
Uk
)?

, ∀k ∈ N , as an optimal solution to problem

(7.4a) – (7.4g), due to the consensus constraint (7.4g), we are able to recover a U? satisfying

all constraints (7.1b) – (7.1f). Hence, the optimal cost of (7.1a) – (7.1f) is no more than that

of (7.4a) – (7.4g), either. Therefore, the two problems are equivalent to each other.

7.3 The Decomposed SDP Relaxation Approach

Similarly, we would like to make the following change of variables

W k := Uk
(
Uk
)T ∈ R2(|N (k)|+1)×2(|N (k)|+1) ∀k ∈ N

E(k,l) := U (k,l)
[
U (k,l)

]T ∈ R4×4 ∀(k, l) ∈ L.

We need to clarify that E(k,l) is part of W k due to our previous definitions of Uk and U (k,l).

Then we can rewrite the decomposed OPF problem (7.4a) – (7.4g) equivalently as

minimize
α, Wk, ∀k∈N

∑
l∈G

αl (7.5a)

subject to

Pmin
k −P dk ≤ Tr

{
YD
k W

k
}
≤ Pmax

k −P dk ∀k ∈ N (7.5b)

Qmin
k −Qdk ≤ Tr

{
Y
D
k W

k
}
≤ Qmax

k −Qdk ∀k ∈ N (7.5c)

(V min
k )2 ≤ Tr

{
MD

k W
k
}
≤ (V max

k )2 ∀k ∈ N (7.5d)

Lkl � 0 ∀(k, l) ∈ L (7.5e)

Cl � 0 ∀l ∈ G (7.5f)

W k � 0 ∀k ∈ N (7.5g)

W 1z1 = 0 (7.5h)

E(k,l) � 0 ∀(k, l) ∈ L (7.5i)

E(k,l) = E(l,k) ∀(k, l) ∈ L (7.5j)

rank
(
W k
)

= 1 ∀k ∈ N (7.5k)

rank
[
E(k,l)

]
= 1 ∀(k, l) ∈ L (7.5l)
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where we define

Lkl :=


−(Smax

kl )2 Tr
{
YD
klE

(k,l)
}

Tr
{
Y
D
klE

(k,l)
}

Tr
{
YD
klE

(k,l)
}

−1 0

Tr
{
Y
D
klE

(k,l)
}

0 −1


Cl :=

cl1Tr
{
YD
l W

l
}
− αl + al

√
cl2Tr

{
YD
l W

l
}

+ bl

√
cl2Tr

{
YD
l W

l
}

+ bl −1

 .
Moreover, z1 ∈ R2(|N (1)|+1) is a vector of all zeros except the (|N (1)| + 2)-th entry is one. If

we drop the two rank-one constraints (7.5k) and (7.5l), then problem (7.5a) – (7.5j) becomes

a convex SDP relaxation for the decomposed OPF formulation (7.4a) – (7.4g).

Theorem 27. The relaxation between problems (7.4a) – (7.4g) and (7.5a) – (7.5j) is tight if

and only if (7.5a) – (7.5j) has a set of rank-one optimal solutions.

Proof of Theorem 27. Necessity (⇒): Let us suppose that
(
Uk
)?

and
[
U (k,l)

]?
, for all k ∈ N

and (k, l) ∈ L, are optimal solutions to (7.4a) – (7.4g). Then, by definition, we can construct

(
W k
)?

:=
(
Uk
)?[(

Uk
)?]T ∀k ∈ N[

E(k,l)
]?

:=
[
U (k,l)

]?{[
U (k,l)

]?}T ∀(k, l) ∈ L

as a set of rank-one solutions to (7.5a) – (7.5j). Also, this solution set must be optimal because

the relaxation is tight between (7.4a) – (7.4g) and (7.5a) – (7.5j).

Sufficiency (⇐): Conversely, let us suppose that (7.5a) – (7.5j) has a set of rank-one optimal

solutions
(
W k
)?

and
[
E(k,l)

]?
, for all k ∈ N and (k, l) ∈ L. We know that the optimal cost

of (7.5a) – (7.5j) evaluated with
(
W k
)?

and
[
E(k,l)

]?
is no more than that of (7.4a) – (7.4g),

because (7.5a) – (7.5j) is only a relaxation. Moreover, since
(
W k
)?

and
[
E(k,l)

]?
are rank-one

matrices, from which we can recover
(
Uk
)?

and
[
U (k,l)

]?
as a solution set for (7.4a) – (7.4g).

So the optimal cost of (7.4a) – (7.4g) is no more than that of (7.5a) – (7.5j), either. Thus, we

conclude that the relaxation between (7.4a) – (7.4g) and (7.5a) – (7.5j) is tight.

Corollary 4. If the decomposed SDP relaxation (7.5a) – (7.5j) has a rank-one optimal solution,

then we recover an optimal voltage vector U? for OPF problem (7.1a) – (7.1f).

Proof of Corollary 4. This result directly follows from Theorems 27 and 26.
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7.4 Discussions on the Decomposed SDP Relaxation

This section discusses in details about the decomposed SDP relaxation (7.5a) – (7.5j).

7.4.1 The Problem Size

We prefer to solve OPF problems via the decomposed SDP relaxation (7.5a) – (7.5j) since

its problems size grows nicely when the size of the power network n increases.

Let us make a comparison with the SDP relaxation (7.2a) – (7.2h). As we know, the matrix

variable W in (7.2a) – (7.2h) is of size 2n× 2n. Since W is symmetric, in fact we have totally

(2n+ 1)n = 2n2 + n variables there.

Now let us have a look at the decomposed SDP relaxation (7.5a) – (7.5j). Here, we have

assigned each bus k a symmetric matrix variable W k ∈ R2(|N (k)|+1)×2(|N (k)|+1), where we recall

that |N (k)| denotes the number of neighboring buses of bus k, for all k ∈ N .

Due to the sparsity of power networks, we assume that the average number of neighboring

buses over the whole network is given by µ, and usually this average is no more than 4. Thus,

for each W k we have c := (2µ + 3)(µ + 1) = 2µ2 + 5µ + 3 ≤ 55 variables. Summing them up

for all k ∈ N , problem (7.5a) – (7.5j) should have no more than 55n variables, which is much

less than 2n2 + n when n ≥ 50.

The decomposed SDP relaxation (7.5a) – (7.5j) not only cuts down the number of variables,

but it also reduces the largest size of LMI constraints. In problem (7.2a) – (7.2h) the largest

LMI constraint (7.2g) is of a size 2n×2n. In contrast, the size of constraint (7.5g) is no greater

than 10 × 10 on average. We believe that this will be another factor which helps fasten the

computation speed for solving OPF problems.

At the expense of reducing the number of variables and the largest size of LMI constraints,

the decomposed SDP relaxation (7.5a) – (7.5j) introduces an extra constraint (7.5j), known as

the consensus constraint, for each transmission line. Nevertheless, because power networks are

sparsely connected, the number of the consensus constraints can be estimated by µn/2 ≤ 2n.

Fortunately, this upper bound also grows linearly as the size of power network expands.
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7.4.2 A Distributed Structure

We would also like to point out that the decomposed SDP relaxation (7.5a) – (7.5j) has a

distributed structure. Indeed, the objective function (7.5a) is distributable, and, moreover, all

the constraints (7.5b) – (7.5i) are completely decoupled for each bus.

As a consequence, we could view (7.5a) – (7.5i) as a collection of decoupled, smaller SDP

relaxations, each of which can be assigned to a corresponding bus in the power network. Then,

each bus k solves its own SDP relaxation based on those local coefficient matrices YD
k , Y

D
k ,

MD
k , YD

kl, and Y
D
kl, and yields one locally optimal solution

(
W k
)?

. Meanwhile, the consensus

constraint (7.5j) takes charge of coordinating all the locally optimal solutions over the whole

power network, finally reaching a consensus at a global OPF solution.

7.4.3 Rank-One Solutions

It has been shown in Lavaei and Low (2012), Molzahn et al. (2013), and Madani et al. (2015)

that when applied to solve large-scale OPF problems, the SDP relaxation (7.2a) – (7.2h) may

not provide a rank-one optimal solution. To address this issue, people have figured out several

methods to force the optimal solution of problem (7.2a) – (7.2h) to be as close to rank-one as

possible.

We have two methods that may improve rank-one solutions for large-scale OPF problems.

The first adds a little resistance (10−5 PU) to every transformer in the power network, such that

the resulting resistive graph of the network becomes strongly connected, see Lavaei and Low

(2012) as a reference. The second one, as is proposed by Madani et al. (2015), is using extra

penalizations that force problem (7.2a) – (7.2h) to yield rank-one solutions. These penalty

terms include the total reactive power and apparent power losses.

Applying these methods respectively to the decomposed SDP relaxation (7.5a) – (7.5j), we

find that the latter one works better for large-scale OPF problems. Therefore, in the following

simulation section, we will change our previous cost function (7.5a) to be

∑
l∈G

αl + εq
∑
l∈G

Tr
{
Y
D
l W

l
}

(7.6)

and study (7.6) and (7.5b) – (7.5j) as a modified version of our decomposed SDP relaxation.
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7.5 Simulations

In this section, we report our simulation results. We solve six OPF test cases over the IEEE

benchmark 14, 30, 57, 118, 300, and the Polish 2383WP bus systems, respectively.

System data of these power networks are extracted from the archives of the MATPOWER

toolbox. The OPF constraints include the voltage magnitude limits, active and reactive power

demands at every bus, as well as apparent power constraints for every transmission lines.

We run all simulations on a computer that has a 2.4 GHz Intel Core i5 CPU and a 4 GB

RAM. We employ the MATLAB based CVX toolbox for implementing the decomposed SDP

relaxations, and we choose the SDPT3 4.0 as our SDP solver.

In our simulations, we set a threshold 10−3 for checking the rank-one condition. In other

words, if the second largest eigenvalue of a solution matrix we have obtained is less than 10−3,

then we believe that this solution matrix is of rank-one.

Our simulation results are listed in Table 7.3, which shows that the proposed decomposed

SDP relaxation can really fasten the computation speed for solving large-scale OPF problems.

To illustrate this point, we compare the solution time of our algorithm with the OPF solvers

that are proposed by Molzahn et al. (2013) and Madani et al. (2015).

In the both works Molzahn et al. (2013) and Madani et al. (2015), the authors have used

computers with Intel i7 quad-core CPU at 3.4 GHz and 16 GB RAM to run their simulations.

We need to notice that their computer configurations have a performance about two to three

times better than ours. Their solution time are listed, respectively, in Tables 7.1 and 7.2.

Table 7.1 Performance of the OPF solver proposed by Molzahn et al. (2013)

Power Systems 118-Bus 300-Bus Polish 2383-Bus WP

Solution Time (secs) 2.1 5.7 730

Table 7.2 Performance of the OPF solver proposed by Madani et al. (2015)

Power Systems 30-Bus 57-Bus 118-Bus 300-Bus Polish 2383-Bus WP

Solution Time (secs) ≤ 5 ≤ 5 ≤ 5 13.9 529
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From the comparisons of Tables 7.1, 7.2, and 7.3, we can see that for small networks which

have less than 300 buses the performance of our OPF algorithm is fairly comparable with theirs

(taking into account the difference of computer configurations). However, for large networks,

taking the Polish 2383-bus WP system for example, our approach is the fastest when compared

with both OPF solvers proposed by Molzahn et al. (2013) and Madani et al. (2015).

We also observe that for larger power networks, we need a greater parameter εq to keep

optimal solutions close to rank-one. Let us take a look at the IEEE 300-bus benchmark system

as an example. Although we have already chosen a large εq = 100, we still cannot obtain an

exact rank-one solution. There are three buses (k = 97, 99, 245) whose solution matrices are

not rank-one. Nevertheless, we believe that it is close enough to a rank-one solution, because

all the second largest eigenvalues associated with those problematic buses are less than 0.1.

7.6 Summary

Different from what we have done in Chapter 5, in this chapter we have proposed another

consensus-based decomposed SDP relaxation approach to solve OPF problems.

This new approach also exploits the sparsity structure of the power network. Consequently,

the distributed power flow structure enables us to assign each bus in the power network with

a decomposed SDP relaxation, and, more importantly, the total problem size scales linearly as

the power network expands. Meanwhile, the final OPF solution can be reached by running a

consensus over all the buses in the power network. Due to these reasons, our consensus-based

decomposed SDP relaxation approach can greatly fasten the computation speed for solving

large-scale OPF problems.

Finally, we would like to point out that the decomposed SDP relaxation approach proposed

in this chapter is not restrict exclusively to solve OPF problems, but can be also applied to

other rank-one SDP relaxations with similar sparse structures.
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CHAPTER 8. CONCLUSIONS

This dissertation has proposed a continuous-time optimization dynamics approach to study

those non-convex optimizations. The basic idea of this approach is to seek a KKT equilibrium

as the dynamical system evolves. We have proved in Chapter 3 that if there exists a strictly

complementary KKT point at which the evaluated Hessian of the associated Lagrangian with

respect to the primal variable is positive definite, then the optimization dynamics locally has

a unique solution which converges asymptotically to the desired KKT point.

As for general optimization problems, we notice that KKT conditions are only necessary for

local optimality. Thus, when the optimization dynamics associated with a non-convex problem

converges to a KKT equilibrium, we have to further check whether the obtained KKT point is

globally optimal or not. So in Chapter 4 we have studied the non-convex QCQPs as a specific

class of general optimizations, presenting a necessary and sufficient global optimality condition

for those problems. Our result has shown that a KKT point is globally optimal for a non-convex

QCQP if and only if it has a positive semi-definite Hessian of the Lagrangian. Moreover, if the

associated optimization dynamics has a KKT equilibrium with a positive definite Hessian of the

Lagrangian, then, by the convergence analysis developed in Chapter 3, this KKT equilibrium

is locally asymptotically stable with respect to the optimization dynamics.

Next we have employed the optimization dynamics to search global solutions for a special

class of networked non-convex QCQPs, namely, the OPF problems. We have discovered that

the associated optimization dynamics possesses an intrinsic distributed computation structure.

Specifically, the optimization dynamics treats each bus in the power network as an intelligent

computing agent, which only uses the local information from neighboring buses to update its

own decision variables. When compared with the popular SDP dual relaxation approach, the

optimization dynamics can find global OPF solutions under more general conditions.
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In Chapter 6 we have attempted several methodologies to implement our continuous-time

optimization dynamics in a discretized fashion. To maintain the robustness and the distributed

structure, we have utilized the backward Euler’s method and iterative matrix inversions to write

our discrete-time ODE solvers. In simulations, we have successfully applied our ODE solvers

to the optimization dynamics associated with large-scale OPF and phase recovery problems.

Due to the limitations of discretization, nevertheless, our distributed ODE solvers also require

to use the network multiple times at each backward Euler iteration.

We have revisited OPF problems in Chapter 7. Different from Chapter 5, we have proposed

a consensus-based, decomposed SDP relaxation approach to solve large-scale OPF problems.

This new approach, by fully exploiting the natural sparsity of the power network, decomposes

the standard SDP relaxation into a bunch of smaller SDPs. Consequently, the problem size of

the decomposed SDP relaxation scales linearly as the power network expands, and it greatly

fastens the computation speed for solving large-scale OPF problems.

In future research, we should focus more on investigating the analog implementation of our

optimization dynamics, since it will best maintain the distributed computation structure and

will be more compatible to real physics. Taking the OPF problem for example, the distributed

computation and the suitability for real physics are the exact challenges we need to meet for

developing the next-generation smart grids. To achieve an efficient analog implementation, we

should further explore the physical meanings of the optimization dynamics, which will help us

embed our optimization dynamics into the physical layer of networked systems.
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APPENDIX PROOF OF THEOREM 24

Proof of Theorem 24. (Sufficiency ⇐) Suppose that optimization dynamics (5.6a) – (5.6h) has

an equilibrium (U?, λ?, γ?, µ?, ν?) which satisfies the conditions B(U?, λ?, γ?, µ?, ν?)U? = 0 and

B(U?, λ?, γ?, µ?, ν?) � 0. Hence, by Theorem 11, (U?, λ?, γ?, µ?, ν?) is a saddle-point for the

Lagrangian (5.4). Then the optimal cost for OPF problem (5.2a) – (5.2e) is given by

p? = L(U?, λ?, γ?, µ?, ν?)

=
∑
l∈G

[
cl2(P dl )2 − cl2

(
U?TYlU

?
)2

+ cl1P
d
l + cl0

]
+
∑
k∈N

[
λ?kP

min
k − λ?kPmax

k + λ?kP
d
k + γ?

k
Qmin
k − γ?kQmax

k + γ?kQ
d
k + µ?

k
(V min
k )2 − µ?k(V max

k )2
]

−
∑

(k,l)∈L

ν?kl

[
(Smax
kl )2 +

(
U?TYklU

?
)2

+
(
U?TYklU

?
)2]

where at the first step we have used the complementary slackness, and at the second step we

have applied the equality B(U?, λ?, γ?, µ?, ν?)U? = 0. Since OPF problem (5.13a) – (5.13g) is

equivalent to (5.2a) – (5.2e), it has the same optimal cost p?.

Based on this equilibrium (U?, λ?, γ?, µ?, ν?), we can construct a solution for the SDP dual

relaxation (5.16a) – (5.16c) as follows

ρ?
k

= λ?k, ρ?k = λ
?
k, ξ?

k
= γ?

k
, ξ

?
k = γ?k, ζ?

k
= µ?

k
, ζ

?
k = µ?k(

h1
kl

)?
= ν?kl,

(
h2
kl

)?
= ν?kl

(
U?TYklU

?
)
,
(
h3
kl

)?
= ν?kl

(
U?TYklU

?
)

(
h4
kl

)?
= ν?kl

(
U?TYklU

?
)2
,
(
h6
kl

)?
= ν?kl

(
U?TYklU

?
)2

(
h5
kl

)?
= ν?kl

(
U?TYklU

?
)(
U?TYklU

?
)

(
r1
l

)?
=
√
cl2
(
U?TYlU

? + P dl
)
, and

(
r2
l

)?
= cl2

(
U?TYlU

? + P dl
)2
. (A.1)

We can verify the dual feasibility of solution (A.1). That is, Aopt = B(U?, λ?, γ?, µ?, ν?) � 0,
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and

H?
kl = ν?kl


1

(
U?TYklU

?
) (

U?TYklU
?
)

(
U?TYklU

?
) (

U?TYklU
?
)2 (

U?TYklU
?
)(
U?TYklU

?
)

(
U?TYklU

?
) (

U?TYklU
?
)(
U?TYklU

?
) (

U?TYklU
?
)2

 � 0

R?
l =

 1
√
cl2
(
U?TYlU

? + P dl
)

√
cl2
(
U?TYlU

? + P dl
)

cl2
(
U?TYlU

? + P dl
)2
 � 0.

When substitute solution (A.1) into the SDP dual cost (5.14), we obtain d? = p?. Therefore,

we conclude that strong duality holds between OPF problem (5.13a) – (5.13g) and its SDP

dual relaxation (5.16a) – (5.16c).

(Necessity⇒) Conversely, let us suppose that the SDP dual relaxation (5.16a) – (5.16c) has

a zero optimal duality gap with OPF problem (5.13a) – (5.13g). Let (α?, U?) denote the optimal

primal solution and (ρ?, ξ?, ζ?,R?,H?) denote the optimal dual solution, respectively. Then we

have α?l ≥ cl2
(
U?TYlU

?+P dl
)2

+cl1
(
U?TYlU

?+P dl
)

+cl0, Aopt � 0, and AoptU? = 0, because

Lavaei and Low (2012) has shown that U? must lie in the null space of Aopt. Furthermore,

complementary slackness holds

ρ?
k

(
Pmin
k − P dk − U?

TYkU
?
)

= 0, ρ?k

(
U?TYkU

? − Pmax
k + P dk

)
= 0, ∀k ∈ N

ξ?
k

(
Qmin
k −Qdk − U?

TYkU
?
)

= 0, ξ
?
k

(
U?TYkU

? −Qmax
k +Qdk

)
= 0, ∀k ∈ N

ζ?
k

[
(V min
k )2 − U?TMkU
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]
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?
k

[
U?TMkU

? − (V max
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]
= 0, ∀k ∈ N
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k
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k
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k
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H?
kl � 0, tr{Lkl(U?)H?

kl} = 0, ∀(k, l) ∈ L.

Firstly, we can choose λ?k = ρ?
k
, λ

?
k = ρ?k, γ

?
k

= ξ?
k
, γ?k = ξ

?
k, µ

?
k

= ζ?
k
, and µ?k = ζ

?
k.

Secondly, we expand the complementary slackness condition tr{Cl(α
?, U?)R?

l } = 0 as

cl1
(
U?TYlU

? + P dl
)

+ cl0 − α?l + 2
(
r1
l

)?√
cl2
(
U?TYlU

? + P dl
)
−
(
r2
l

)?
= 0. (A.2)

Due to the primal feasibility of α? and U?, we have

α?l ≥ cl2
(
U?TYlU

? + P dl
)2

+ cl1
(
U?TYlU

? + P dl
)

+ cl0. (A.3)
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Substituting inequality (A.3) into (A.2) we get

(
r2
l

)? − 2
(
r1
l

)?√
cl2
(
U?TYlU

? + P dl
)

+ cl2
(
U?TYlU

? + P dl
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We also note that
(
r2
l

)? ≥ [(r1
l

)?]2
because of the dual feasibility condition R?

l � 0. Replacing

the term
(
r2
l

)?
in inequality (A.4) by a smaller value

[(
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l

)?]2
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[(
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)? −√cl2(U?TYlU
? + P dl
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Since the left-hand side of inequality (A.5) is expressed as a sum of squares, which is always

non-negative, we must have [(
r1
l

)? −√cl2(U?TYlU
? + P dl

)]2
= 0. (A.6)

Then equality (A.6) finally implies that
(
r1
l

)?
=
√
cl2
(
U?TYlU

? + P dl
)
.

Thirdly, we expand another complementary slackness condition tr{Lkl(U?)H?
kl} = 0 as

(
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kl

)?
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kl

)?(
U?TYklU
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(
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kl

)?(
U?TYklU
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+
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= 0. (A.7)

Multiplying both the left- and right-hand sides of equality (A.7) by
(
h1
kl
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yields

(
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h1
kl
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kl )2 − 2
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Similarly, according to both the primal and dual feasibility, we have

(
U?TYklU

?
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+
(
U?TYklU
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)2 ≤ (Smax

kl )2 (A.9)
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)?(
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where inequality (A.10) is derived from the positive semi-definiteness constraint H?
kl � 0.

Substituting inequalities (A.9) and (A.10) into (A.8) yields[(
h1
kl

)?(
U?TYklU

?
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(
h2
kl

)?]2
+
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Again, since the left-hand side of inequality (A.11) is a sum of squares, we must have[(
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−
(
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= 0 and
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which implies
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Using (A.13) we can rewrite inequality (A.10) as
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Substituting both (A.13) and (A.14) into inequality (A.8) yields
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kl

)?]2[(
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kl )2
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On the other hand, from inequality (A.9) we know
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Due to both inequalities (A.15) and (A.16), we must have
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kl
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which further implies
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Let ν?kl =
(
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kl

)?
. Substituting

(
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,
(
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(
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?
)

into (5.15), we obtain 0 � Aopt = B(U?, λ?, γ?, µ?, ν?). Applying the

fact that U? lies in the null space of Aopt, we have B(U?, λ?, γ?, µ?, ν?)U? = AoptU? = 0. This

completes the proof of Theorem 24.
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